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1. Introduction

1.1. The Duflo-Serganova functor DS

For a finite dimensional complex Lie superalgebra g and an odd element x satisfying 
[x, x] = 0 Duflo and Serganova defined a functor DSx : Rep(g) → Rep(gx) where gx :=
ker ad(x)/im ad(x). This functor is given by taking the cohomology of the complex 

V
ρ(x)

V
ρ(x)

V for (V, ρ) ∈ Rep(g). For gl(m|n) we have gx � gl(m − k|n − k)
and for osp(m|2n) we have gx � osp(m − 2k|2n − 2k) where k is the so-called rank of 
x. The DS-functor is a symmetric monoidal functor which allows to reduce questions 
about superdimensions or tensor products to lower rank. It is however very complicated 
to compute DS(V ) explicitly. In [14] the authors derived a closed formula for DSx(L(λ))
where L(λ)) is a finite dimensional irreducible representation of gl(m|n) and arbitrary 
x. In particular DSx(L(λ)) is always semisimple.

1.2. Serganova’s conjecture

More generally Serganova conjectured [18] that DSx should be semisimple for any 
basic classical Lie superalgebra (i.e. DSx(L) is semisimple for irreducible L). Since the 
conjecture is trivial in the exceptional cases (in these cases gx is a reductive Lie algebra) 
this leaves the osp(m|2n)-case. We prove Serganova’s conjecture in this article and give 
a closed formula for DSx(L(λ)) for any x and any λ.

1.3. Main steps and results

We work in the full subcategory F̃(g) of algebraic representations of osp(m|2n). The 
category F̃(g) is canonically isomorphic to the category of SOSp(m|2n)-modules; this 
category decomposes into a direct sum:

F̃(g) = F(g) ⊕ Π(F(g)),

where F(g) is the full subcategory of modules M , where the parity is induced from the 
parity on Λm|n. We view DSx as a functor F̃(g) → F̃(gx). For fixed x of rank r we also 
write DSr.

1.3.1. The cases t = 0, 1, 2
Recall that osp(M |N) consists of two series: the B-series (when M is odd) and the 

D-series (when M is even). In the osp-case each block of atypicality k is equivalent to the 
principal block of osp(2k+t|2k) where t = 1 for the B-series and t = 0, 2 for the D-series. 
The equivalences are described in [11] (we recall details in 6.2). We consider these three 
cases separately and set g := osp(2m + t|2n), where t = 0, 1, 2 as above. This division is 

compatible with DS-functors: if N lies in a block of type t, then DSx(N) lies in a block 
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of type t. In Section 6 we reduce the computations of multiplicities [DSx(L(λ)) : Lgx
(ν)]

to the case of principal blocks.

1.3.2. Reduction to the principal block
Any irreducible module can be moved via a series of translation functors to a stable

irreducible module (see section 4). The subcategory Fg
st of a block Fg(g) consisting of 

stable modules (a module stable if all its simple subquotients are stable) is equivalent via 
a functor Res to the principal block of osp(2k+ t|2k) for t = 0, 1, 2. Since DS commutes 
with both Res and translation functors (see section 6.3), we can compute it on irreducible 
modules in the principal block.

1.3.3. Recursive formulae
We then induct on the degree of atypicality. For atypicality 1 (i.e. the principal block of 

osp(2|2), osp(3|2) and osp(4|2)) DS(L(λ)) can be computed easily (see for example [9]). 
In order to treat the general case we establish recursive formulae for the multiplicities of 
irreducible constituents in DSx(L(λ)).

For a category C denote by Irr(C) the set of isomorphism classes of simple modules 
in C. Let Vst be the natural representation. For blocks F̃g1(g), F̃g1(g) we denote by T g0

g1

the translation functor

T g0
g1

: F̃g1(g) → F̃g0(g)

which maps N to the projection of N ⊗ Vst to the subcategory F̃g0(g). Since blocks of 
atypicality n for g and blocks of atypicality n − r for gx (rk(x) = r) correspond to each 
other (via so-called core diagrams), we may look at

T g0
g1

: F̃g1(g) → F̃g0(g), T g0
g1

: F̃g1(gx) → F̃g0(gx).

For N ∈ Fg1(g) and L′ ∈ Irr(gx)g0 we have

[DSr(T g0
g1

(N)) : L′] = [T g0
g1

(DSr(N)) : L′]
=

∑
L1∈Irr(gx)g1

[DSr(N) : L1][T g0
g1

(L1) : L′].

This formula allows us in Section 7 to successively reduce the computation of the 
multiplicity [DSx(L(λ)) : Lgx

(ν)] to the case where gx is 0 or C.

1.3.4. Multiplicities for the case rankx = 1
For such x the condition gx = 0, C implies g = osp(m|2) for m = 2, 3, 4; for these 

cases DSx(L) can be easily computed. This gives the multiplicity [DSx(L(λ)) : Lgx
(ν)]

for rank x = 1. As in the gl(m|n)- and pn-cases, treated in [14], [7] respectively, we give 
the final answer in terms of arc diagrams. Notably in all these cases the multiplicities do 

not depend on x (for x of rank one).
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For a weight λ denote by howl(λ) the corresponding weight in the principal block; to 
howl(λ) we attach an arc diagram Arc(howl(λ)), see 8.1.

Theorem A (see Theorem 8.2 for a more precise statement). Let rk(x) = 1. Then Lgx
(ν)

is a subquotient of DSx(L(λ)) if and only if Arc(howl(ν)) is obtained from Arc(howl(λ))
by removing a maximal arc and, in addition, in the osp(2m +1|2n)-case, if ν has a sign, 
then the signs of λ and ν are equal. The multiplicity of Lgx

(ν) is either 1 or 2 (depending 
on the shape of the Arc diagram).

1.3.5. Semisimplicity for the case rank x = 1
In [9] (see also Corollary 6.2.2) it is shown that the extension graph of F(g) is bi-

partite; the bipartition is given by a sign function dex : Irr(F̃(g)) → {±1} such that 
Ext1(L1, L2) = 0 if dex(L1) = dex(L2). Theorem A implies [DSx(L(λ)) : Lgx

(ν)] = 0
if dex(L(λ)) �= dex(L(ν)) (and rank x = 1); this shows the semisimplity of DSx(L(λ)).

1.3.6. σ-Invariance
In the osp(2m|2n)-case DSx(L(λ)) is invariant with respect to the outer involution σ

induced by a Dynkin diagram automorphism of gx. This follows from semisimplicity and 
Theorem A. Alternatively, this can also deduced from the fact that DS (being a tensor 
functor) commutes with duality (see the proof of Lemma 5.7 (ii)). A similar statement 
holds for the exceptional Lie superalgebra F (4) with gx = sl3, see [9]. A natural question 
is whether DSx(N) is σ-invariant for each finite-dimensional N .

1.4. The general case

We denote with F+(g) the full Serre subcategory of F̃(g) generated by the irreducible 
objects with dex(L) = 1. By definition it is a semisimple category. We say that a module 
M is pure if for any subquotient L of M , Π(L) is not a subquotient of M .

Serganova’s semisimplicity conjecture follows from the following theorem.

Theorem B (Purity and semisimplicity). For each x one has DSx

(
F+(g)

)
= F+(gx). In 

particular DSx(L(λ)) is pure.
For each L ∈ Irr(F̃(g)) the module DSx(L) only depends on the rank of x. Moreover, 

DSr+1(L) ∼= DS1(DSr(L)), where DSr stands for DSx with rank x = r.

By above, the statements follow from Theorem A for rank x = 1; the general case 
easily follows by induction on rank x.

For gl(m|n) purity and semisimplicity were established in [14]; for the exceptional 
cases purity was checked in [8] (and semisimplicity is trivial since gx is reductive).

By [7], purity holds for the pn-case. The other assertions of Theorem B do not hold: 
DS1 maps the standard representation of p2 to the standard representation of p1 which 

is not semisimple; for a simple p2-module L of dimension (4|4), DS2(L) = 0 whereas 
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DS1(DS1(L)) = C⊕ΠC. To the best of our knowledge the composition factors of DSr(L)
are not known for r > 1.

Theorems A, B solve the long-standing problem of computing the superdimension 
of any irreducible osp(m|2n)-module (since DS is symmetric monoidal it preserves the 
superdimensions); see [14] and [7] for analogous results in the gl(m|n) and p(n)-case. The 
superdimension is up to a sign equal to the dimension of an isotypic representation of gx, 
where gx is either an orthogonal or symplectic Lie algebra or osp(1|2r) for some r. Our 
main theorem also allows to reduce certain questions about tensor products to lower rank 
similarly to [15], [13]. Our results imply that the DS functor restricts to a symmetric 
monoidal functor between the full subcategories of indecomposable direct summands in 
iterated tensor products of irreducible modules. In this world the DS functor can be 
reinterpreted as a restriction functor similar to [15, Section 5].

1.5. Acknowledgments

We are grateful to the referee of an earlier version for a very thorough report and spot-
ting several flaws in the manuscript. The authors are grateful to V. Hinich, V. Serganova 
and C. Stroppel for numerous helpful discussions. The results were reported at the 
Springfest in honor of Vera Serganova in April 2021. The research of Thorsten Hei-
dersdorf was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German 
Research Foundation) under Germany’s Excellence Strategy – EXC-2047/1 – 390685813.

1.6. Index of definitions and notation

Throughout the paper the ground field is C; N stands for the set of non-negative 
integers. We denote by Π the parity change functor. In Sections 2—8 g = osp(M |2n)
with M, n ≥ 0 and M either 2m or 2m + 1. One has osp(1|0) = osp(0|0) = 0 and 
osp(2|0) = C.

Ω(N),Σ, σ, F̃(g),F(g), Irr,Λ+
m|n, L(λ), χλ Section 2

weight diagram, the diagram f−f+ 3.1
core symbols, core diagram 3.2.1
Fg(g) 3.3
t, �, Λ(t)

m+�|n, core-free, Θ(t)
k 3.4

gr,Σr, Sr 3.5
tail 3.6
howl, τ 3.7
dex 3.7.8
stable diagrams 3.8
translation functor T g′

g 4.1
DSx 5.2
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supp(x), xs, DSs 5.5
gx 5.6
graded multiplicity 6.4
arc diagram 8.1

2. Notation

2.1. Root lattice

Our notation and a choice of triangular decomposition follow [11], [12].
We denote by Δ the set of roots of g and by Δ0 (resp., Δ1) the set of even (resp., 

odd) roots. In this paper all modules are weight modules (i.e., h acts diagonally) with 
finite-dimensional weight spaces; for such a module N we set

Ω(N) := {ν ∈ h∗| Nν �= 0}.

The root system Δ lies in the lattice Λm|n ⊂ h∗ spanned by {εi}mi=1 ∪ {δi}ni=1. We 
denote by Λ the lattice spanned by {εi}∞i=1 ∪ {δi}∞i=1 and view Λm|n as a subset of Λ. 
We define the parity homomorphism p : Λ → Z2 by p(εi) = 0, p(δj) = 1 for all i, j.

2.2. Triangular decomposition

We fix a Cartan subalgebra h ⊂ g0. We fix a triangular decomposition corresponding 
to a “mixed” base Σ, i.e. a base containing maximal possible number of odd roots. For 
osp(2m + 1|2n) with m, n > 0 we take

Σ :=
{

δ1 − δ2, δ2 − δ3, . . . , δn−m − ε1, ε1 − δn−m+1, . . . , εm − δn, δn for n > m

ε1 − ε2, ε2 − ε3, . . . , εm−n+1 − δ1, δ1 − εm−n+2, . . . , εm − δn, δn for m ≥ n

and for osp(2m|2n) with m, n > 0 we take

Σ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ1 − δ2, δ2 − δ3, . . . , δn−m+1 − ε1, ε1 − δn−m+2, . . . , εm−1 − δn, δn ± εm
for n ≥ m

ε1 − ε2, ε2 − ε3, . . . , εm−n − δ1, δ1 − εm−n+1, . . . , εm−1 − δn, δn ± εm
for m > n

For the remaining case mn = 0 all triangular decompositions are conjugate and we fix a 
standard base.

Recall that osp(1|0) = osp(0|0) = 0 and osp(2|0) = C; in these cases h = g and 
Δ = Σ = ∅. Note that Λ0|0 = 0 and Λ1|0 = Zε1.
We denote by ρ the Weyl vector of g.
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2.2.1. Involution σ
The superalgebra osp(2m|2n) with m, n > 0 or m > 1, n = 0 admits an involutive 

automorphism σ induced by the automorphism of the Dynkin diagram of Σ (the re-
sulting action on h∗ is given by the reflection rεm). Since osp(2m|2n) is a Kac-Moody 
superalgebra, we can choose σ in such a way that

σ(gδn±εm) = gδn∓εm , σ(h) = h, σ|g±α
= Id for each α ∈ Σ \ {δn ± εm}. (1)

The restriction of σ to o2m ⊂ g0 is the standard involution induced by the automorphism 
of the Dynkin diagram of o2m.

For osp(2|0) = C we set σ := − Id. For osp(0|2n) = sp2n we set σ := Id. Note that 
for all cases σ(Σ) = Σ.

2.3. Category F(g)

The category F in(g) of finite dimensional representations of g with parity preserving 
morphisms is the direct sum of two categories: F̃(g) with the modules whose weights lie 
in Λm|n and F̃⊥(g) with the modules whose weights lie in h∗ \Λm|n. The category F̃⊥(g)
is semisimple and DSx(F̃⊥(g)) = 0 for x �= 0; all simple modules in F̃⊥(g) are typical, 
their characters are given by the Weyl-Kac character formula.

The category F̃(g) decomposes into a direct sum:

F̃(g) = F(g) ⊕ Π(F(g)),

where F(g) is the full subcategory with the modules M , where the parity is induced from 
the parity on Λm|n, i.e. M ∈ F(g) if and only if each weight space p(Mν) = p(ν) for all 
ν ∈ Λm|n. We will sometimes omit g from notation if this does not lead to ambiguity; 
for instance, we may use F instead of F(g). Except for osp(2|2n), F̃(g) is canonically 
isomorphic to the category of SOSp(m|2n)-modules.

2.3.1. For each category C we denote by Irr(C) the set of isomorphism classes of 
irreducible modules in C. For each finite-dimensional N ∈ C and L ∈ Irr(C) we consider 
the graded multiplicity: we write [N : L] = (d0|d1) if a Jordan-Hölder series of N contains 
d0 copies of L and d1 copies of Π(L).

We denote by L(λ) a simple g-module of the highest weight λ. We set

Λ+
m|n := {λ ∈ Λm|n| dimL(λ) < ∞}.

For λ ∈ Λ+
m|n we fix the grading in such a way that L(λ) ∈ F(g). Then

Irr(F(g)) = {L(λ)| λ ∈ Λ+
m|n}.

We denote by Lgx
(ν) the simple gx of the highest weight ν.

We denote by χλ the central character of L(λ).
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3. Weights, roots and diagrams

3.1. Weight diagrams

Many properties of a finite dimensional representation L(λ) can be better understood 
by assigning a weight diagram to the weight λ (see e.g. [11]). Note that the conventions 
how to draw these weight diagrams differ. We follow essentially [11] and list some dif-
ferences below. These weight diagrams were first introduced in the gl(m|n)-case in [1] in 
their work on Khovanov algebras of type A. The weight diagrams introduced in [4] for 
representations of the orthosymplectic supergroup differ considerably from ours (see [4], 
Section 6).

3.1.1. Take λ ∈ Λ+
m|n and write λ + ρ =:

m∑
i=1

aiεi +
n∑

j=1
bjδj .

We assign to λ the (weight) diagram using the following procedure: we label the 
numberline N as follows:

for osp(2m|2n) we put > (resp., <) at the position with the coordinate t if |ai| = t

(resp., |bi| = t) for some i;
for osp(2m + 1|2n) we put > (resp., <) at the position with the coordinate t − 1/2 if 

|ai| = t (resp., |bi| = t).
If >, < occupy the same position we put the symbol × (×s stands for s symbols <

and s symbols >; >
×s stands for s symbols < and s + 1 symbols >). We put an empty 

symbol ◦ at the non-occupied positions with the coordinates in N. We call the resulting 
diagram an unsigned weight diagram.

For osp(2m|2n) with m ≥ 1 we add the sign + (resp., −) if am > 0 (resp., am < 0).
For osp(2m +1|2n) we put the sign + (resp., −) before the diagram if the zero position 

is occupied by ×p for p > 0 and (λ + ρ|εi) = 1
2 for some i (resp., (λ + ρ|εi) �= 1

2 for each 
i).

We call the resulting diagram a weight diagram of λ.
Notice that for osp(2m|2n)-case the action of automorphism σ : λ �→ λσ corresponds 

to the change of signs of the diagrams; we denote this operation (the change of sign) also 
by σ.

3.1.2. Note that for osp(2m + 1|2n)-case our weight diagram is obtained from the 
diagram used in [11] by the shift by −1/2.

3.1.3. Examples: osp(2m|2n)
The empty diagram corresponds to osp(0|0) = 0; the diagram > (respectively, −◦ >) 

corresponds to the weight 0 (respectively, −ε1) for osp(2|0) = C. One has L(∅) = C and 

L(>) is the trivial osp(2|0)-module.
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For s > 0 the diagram ×s is assigned to the weight 0 for osp(2s|2s); the diagrams 
×s

>>, ×s >> are assigned to the osp(2s + 4|2s)-weights 0 and ε1 + ε2 respectively; the 
diagrams ± ◦ × ◦ × are assigned to the osp(4|4)-weights 3(δ1 + ε1) + (δ2 ± ε2).

3.1.4. Examples: osp(2m + 1|2n)
The empty diagram corresponds to osp(1|0) = 0; the diagram > (resp., <) corresponds 

to the weight 0 for osp(3|0) = o3 (resp., for osp(1|2)).
For s > 0 the diagram −×s is assigned to the weight 0 for osp(2s +1|2s); the diagram 

+×s is assigned to the weight ε1 for osp(2s + 1|2s).
The diagram 

×n

>> is assigned to the osp(2n + 5|2n)-weight 0, the diagrams 
×
>, −× >, 

+× > to the osp(5|2)-weights 0, ε1, ε1+ε2 respectively, and the diagrams 
×
<, −× <, +× <

to the osp(3|4)-weights 0, δ1, ε1 + δ1 respectively.

3.1.5. The above procedure gives a one-to-one correspondence between Λ+
m|n and 

the diagrams containing k symbols ×, m − k symbols > and n − k symbols < (where 
k ≤ min(m, n)) with the following additional properties:

(i) the coordinates of the occupied position lie in N and each non-zero occupied position 
contains exactly one of the signs {>, <, ×};

(ii) for osp(2m|2n) with m > 0 the zero position contains any number of ×, no < and 
at most one >; the diagram has a sign if and only if the zero position is empty;

(iii) for osp(2m + 1|2n) the zero position contains any number of × and at most one of 
the symbols >, <; the diagram has a sign if and only if the zero position is occupied 
by ×i for i ≥ 1.

3.1.6. The atypicality of λ is equal to the number of symbols × in the diagram of λ.

3.1.7. Notation
We sometimes identify a dominant weight and its weight diagram; for instance, f ∈

Λ+
m|n means that f is a weight diagram assigned to a weight in Λ+

m|n.
For a weight diagram f we sometimes use the notation L(f) for the corresponding 

highest weight module. For instance, L(∅) = C and L(>) is the trivial osp(2|0)-module; 
L(×s) (resp., L(−×s)) stands for the trivial osp(2s|2s) (resp., osp(2s + 1|2s)-module) 
and L(+×s) stands for the standard osp(2s + 1|2s)-module.

3.1.8. Remark: OSp-modules
Take g = osp(2m|2n). By [4, Proposition 4.11] the simple OSp(2m|2n)-modules are 

either of the form L(λ) if λ ∈ Λ+
m|n is σ-invariant or L(λ) ⊕ L(λσ). Thus the simple 

OSp(2m|2n)-modules are in one-to-one correspondence with the unsigned osp(2m|2n)-
diagrams. For osp(2m +1|2n) and any λ ∈ Λ+

m|n there are two irreducible OSp(2m +1|2n)-

modules L(λ, +) and L(λ, −) which restrict to L(λ).
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3.1.9. We denote by f−f+ the diagram obtained by “gluing” the diagrams f− and 
f+ (where f+ does not have sign); for instance,

×
× ◦ × = f−f+ where f− =

×
×◦, f+ = ×

+ ×2 ◦× = f−f+ where f− = +×2, f+ = ◦×

3.2. Core diagrams and central characters

We say that a g-central character is dominant if F(g) contains modules with this 
central character. By [11], the blocks in F(g) are parametrized by the dominant central 
characters and the dominant central characters can be described in terms of typical 
dominant weights, see below.

3.2.1. We call the symbols >, < the core symbols. A core diagram is a weight diagram 
which does not contain symbols × and does not have − sign.

For a weight diagram f we denote by core(f) the core diagram which is obtained 
from the diagram of f by replacing all symbols × by ◦ and by adding the sign + for 
osp(2m|2n)-case if the zero position is empty.

For λ ∈ Λ+
m|n we denote by core(λ) the weight corresponding to core(f), where f is 

the diagram of λ.
For instance, for osp(4|2) one has

core(× >) = core(±◦ > ×) = +◦ >, core(ε1) = core(±ε2 + ε1 + δ1) = ε1.

Note that for osp(2m|2n) one has core(λ) = core(λσ).

3.2.2. For osp(2m + 1|2n)-case the dominant central characters are parametrized by 
the core diagrams, i.e. for λ, ν ∈ Λ+

m|n

χλ = χν ⇐⇒ core(λ) = core(ν);

for osp(2m|2n), osp(2m + 2|2n) one has

χλ ∈ {χν , χνσ} ⇐⇒ core(λ) = core(ν).

(Note that the atypical central characters of osp(2m|2n) are σ-invariant: χν = χνσ if ν
is atypical.)

3.3. Categories Fg(g)

For each core diagram g we denote by Fg(g) the Serre subcategory of F(g)1 generated 
by L(λ) for λ having diagrams f with core(f) = g.

1 By Serre subcategory generated by a set of simple modules we mean the full subcategory consisting of 

the modules of finite length whose all simple subquotients lie in a given set.
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By above, the categories Fg(osp(2m +1|2n)) are the blocks in F(osp(2m +1|2n)). For 
g := osp(2m|2n) all atypical blocks and σ-invariant typical blocks are of the form Fg(g); 
for a typical block B with B �= Bσ we have Fg(g) = B ⊕ Bσ for a suitable diagram g.

Similarly we use the notation F̃g(g) for Fg(g) ⊕ ΠFg(g).

3.3.1. Let g be a core diagram with m′ symbols > and n′ symbols <.
The category Fg(osp(2m + 1|2n)) is non-zero if and only if m −m′ = n − n′ ≥ 0 and 

that Fg(osp(2m|2n)) is non-zero if and only if m −m′ = n − n′ ≥ 0 and, in addition, g
does not have < at the zero position for m > 0.

The modules in Fg(g) have atypicality m −m′ = n − n′.

3.4. Cases t = 0, 1, 2

Recall that osp(M |N) consists of two series: B (for odd M) and D. We will distinguish 
the following cases (t = 0, 1, 2):

for the B-series (and any core diagram g) we put t := 1;
for the D-series and a core diagram g without > at the zero position we put t := 0;
for the D-series and a core diagram g with > at the zero position we put t := 2.

3.4.1. We say that a block has type t (t = 0, 1, 2) if the core diagram of the corre-
sponding central character has type t. We say that λ ∈ Λ+

m|n has type t if the diagram of 
core(λ) has type t. Then L(λ) lies in a block of type t if and only if λ ∈ Λ+

m|n has type t.

3.4.2. For t = 0, 1, 2 we take g = osp(2m + t|2n); the weights lattice of g is Λm+�|n, 
where

� :=
{

0 for t = 0, 1
1 for t = 2.

We denote by Λ(t)
m+�|n the set of dominant weights of type t in Λ+

m+�|n:
Λ(1)
m+�|n = Λ+

m|n for the B-series;
Λ(0)
m+�|n is the set of osp(2m|2n)-dominant weights in Λ+

m|n with the diagrams without 
symbol > at the zero position;

Λ(2)
m+�|n is the set of osp(2m + 2|2n)-dominant weights in Λ+

m+1|n with the diagrams 
having > at the zero position.

We call λ ∈ Λ(t)
m+�|n core-free if core(λ) = ∅ for t = 0, 1 and core(λ) => for t = 2.

3.4.3. Observe that for λ ∈ Λ(t)
m+�|n we have

λ + ρ =:
m+�∑

aiεi +
n∑

bjδj =
m∑

aiεi +
n∑

bjδj ,

i=1 j=1 i=1 j=1
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since for the case � �= 0 one has � = 1, am+1 = 0.
For t = 0, 1 the weight λ ∈ Λ(t)

m+�|n has atypicality k if and only if core(λ) ∈ Λ+
m−k|n−k. 

For t = 2 the weight λ ∈ Λ(t)
m+�|n has atypicality k if and only if core(λ) ∈ Λ+

m+1−k|n−k; 
note that in this case the core diagram of λ has > at the zero position, so core(λ) lies in 
Λ+
m−k|n−k ⊂ Λ+

m+1−k|n−k. Hence in all cases

core(λ) is a typical weight in Λ+
m−k|n−k.

3.4.4. For t = 0, 1, 2 we denote by Θ(t)
k the set of dominant central characters of 

atypicality k corresponding to the t-case. By above, the map

χ �→ core(χ)

gives a correspondence between Θ(t)
k and the set of typical weights Λ+

m−k|n−k. For t = 1
this is a one-to-one correspondence. For t = 0, 2 the image consists of the typical weights 
η satisfying (η|εm−k) �= 0; the map is injective except for the case t = 0 and k = 0.

3.5. Algebra gr

For t = 0, 1, 2 and r > 0 we set

gr := osp(2r + t|2r).

Let Σ be the base of simple roots for g = osp(2m + t|2n). For 0 < r ≤ min(m; n) we 
denote by Σr a subset of Σ which is a base of an algebra isomorphic to gr (such Σr is 
unique):

Σr :=

⎧⎪⎨
⎪⎩

εm−r+1 − δn−r+1, δn−r+1 − εm−r+2, . . . , εm − δn, δn for t = 1
δn−r+1 − εm−r+1, . . . , εm−1 − δn, δn − εm, δn + εm for t = 0
εm−r+1 − δn−r+1, δn−r+1 − εm−r+2, . . . , εm − δn, δn ± εm+1 for t = 2.

For r = 0 we set Σr = ∅ and ρr = 0. Recall that osp(0|0) = osp(1|0) = 0; for t = 2
we identify osp(2|0) with Cε∗m+1 ⊂ h (where ε∗m ∈ h is such that μ(h) = (μ|εm) for each 
μ ∈ h∗).

We identify gr with the corresponding subalgebra of osp(2m + t|2n) (then Σr is the 
base of gr). We denote by ρr the Weyl vector of gr; one has ρr = ρ|gr∩h and

ρr = 0 for t = 0, 2; ρr = 1
2

r−1∑
(δn−i − εm−i) for t = 1.
i=0
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We denote by Sr the following set: S0 = ∅ and

Sr :=
{

{δn−i − εm−i}r−1
i=0 for t = 0

{εm−i − δn−i}r−1
i=0 for t = 1, 2.

Notice that Sr consists of r isotropic mutually orthogonal roots and Sr ⊂ Σr.

3.6. Tail

Take λ ∈ Λ(t)
m+�|n and let f be the diagram assigned to λ.

Let s ≤ min(m, n) be the maximal number satisfying (λ|Σs) = 0, where Σs as above 
(notice that Σs depends on t). We call s the length of the tail of λ and write

| tail(λ)| = | tail(f)| := s.

For osp(2m|2n)-case s is equal to the number of symbols × in the zero position. For 
osp(2m + 1|2n) the zero position contains s (resp., s + 1) symbols × if the diagram has 
sign − (resp., +); for instance

| tail((−)×m)| = | tail(0)| = m, | tail((+)×m)| = | tail(ε1)| = m− 1.

3.7. Howl

The block of the trivial module is called the principal block (there are two principal 
blocks which differ by Π).

Each block of atypicality k is equivalent to the principal block of osp(2k + t|2k). The 
equivalences are described in [11]; we give some details below. For a dominant weight λ we 
denote by howl(λ) the corresponding weight in the principal block (roughly speaking, the 
passage from λ to howl(λ) essentially amounts to removing the core symbols <, > from 
the weight diagram, see the details below); note that howl(λ) has a core-free diagram.

3.7.1. Let λ ∈ Λ(t)
m+�|n be a weight of atypicality k and let f be the corresponding 

diagram. For each i = 1, . . . , k let si(f) be the number of the positions to the left of ith 
symbol ×, which do not contain core symbols.

3.7.2. Case t = 1
In this case g = osp(2m + 1|2n) and the diagram howl(f) ∈ Λ(1)

k|k is the diagram 
without core symbols, where ith symbol × occupies si(f)th position and the sign of 
howl(f) is such that the tail lengths of howl(f) and f are the same. For instance,

howl(< × < ×) = + ××; howl(±×2 ◦ > ×) = ±×2 ◦×;
howl(

×
> ◦◦ > ×) = −× ◦×; howl(

×
> ×◦ > ×) = + ×2 ◦×
and howl(f) = ∅ if and only if k = 0.
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3.7.3. Case t = 0
In this case g = osp(2m|2n) with no > at the zero position. The diagram howl(f) ∈

Λ(0)
k|k is the diagram without core symbols, where the i-th symbol × occupies the si(f)-th 

position and the sign of howl(f) coincides with the sign of f if howl(f) requires the sign. 
For instance,

howl(±◦ >> ×) = ± ◦ ×; howl(×2 > ×) = ×2×; howl(±◦ > ◦ <) = ∅.

Notice that | tail(f)| = | tail(howl(f))|, so the only case when the diagrams f and howl(f)
do not have the same sign is when howl(f) = ∅.

3.7.4. Case t = 2
In this case g = osp(2m +2|2n) and the zero position of f is occupied by 

×p

> (p ≥ 0). 
The diagram howl(f) ∈ Λ(2)

k+1|k has 
×p

> at the zero position; for i = p + 1, . . . , k the ith 
symbol × in howl(f) occupies the position si + 1. For instance,

howl(
×2

> ◦◦ > ×) =
×2

> ◦ ◦ ×
howl(> × < ×) => ××; howl(><) =>

3.7.5. For λ ∈ Λ(t)
m+�|n with a diagram f let howl(λ) ∈ Λ+ be the weight corre-

sponding to howl(f). Notice that for λ ∈ Λ(t)
m+�|n one has howl(f) ∈ Λ(t)

k+�|k, where k is 
atypicality of λ.

If � �= 0, then t = 2 and howl(f) has > at the zero position, so howl(f) lies in Λ+
k|k. 

Hence in all cases howl(f) ∈ Λ+
k|k.

3.7.6. Note that howl preserves the tail length:

| tail(f)| = | tail(howl(f))|.

3.7.7. Connection between the cases t = 1 and t = 2
Below we describe a remarkable bijection between the core-free diagrams in Λ(1)

(n|n)

and in Λ(2)
(n|n).

To a diagram 
×p

> ◦f we assign the diagram − ×p f if p > 0 and the diagram ◦f if 
p = 0; to a diagram 

×p

> ×f we assign the diagram + ×p+1 f .
This assignment gives a bijection τ between the core-free diagrams for osp(2n +2|2n)

and for osp(2n + 1|2n). Notice that

| tail(τ(f))| = | tail(f)|.
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3.7.8. Map dex
We introduce a map dex : Λ(t)

m+�|n → {±1} by

dex(λ) :=
{

(−1)p(howl(λ)) for t = 0, 1
(−1)p(τ(howl(λ))) for t = 2

(where p is the parity) and the map Irr
(
F̃(g)

)
→ {±1} by

dex(L(λ)) := dex(λ), dex(Π(L(λ)) = − dex(λ).

3.8. Stable diagrams

For osp(2m + 1|2n) a diagram is called stable if all symbols × precede all core sym-
bols (<, >). For osp(2m|2n) a diagram is called stable if all symbols × precede all core 
symbols, except, possibly, the symbol > at the zero position.

A weight λ is called stable if the corresponding diagram is stable.

3.8.1. Take λ ∈ Λ(t)
m+�|n and write

λ + ρ =:
m∑
i=1

aiεi +
n∑

j=1
bjδj .

If λ has atypicality k > 0, then

λ is stable ⇐⇒ core(λ) =
m−k∑
i=1

aiεi +
n−k∑
j=1

bjδj .

(The same holds for k = 0 with t = 1, 2.)

3.8.2. If f is a stable diagram for osp(2m +1|2n) (resp., for osp(2m|2n)) the diagram 
howl(f) is obtained from f by replacing all core symbols (resp., all core symbols in the 
non-zero position) by the empty symbols.

In other words, for λ as above, λ is stable of atypicality k if and only if

howl(λ) + ρk =
k∑

i=1
am−k+iεi +

k∑
j=1

bn−k+jδj ,

where ρk is the Weyl vector of gk.
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4. Stabilization

We call a module stable if all its simple subquotients are of the form L(λ) for stable 
weights λ. The aim of this section is to show that any module in F(g) can be moved 
with a translation functor to a stable module; these results are known, see [11], [12], but 
we decided to summarize the proof.

4.1. Translation functors

Let Vst be the natural representation. For a core diagrams g, g′ we denote by T g′
g the 

translation functors

T g′

g : Fg(g) → Fg′
(g), T g′

g : F̃g(g) → F̃g′
(g)

which map N to the projection of N ⊗ Vst to the subcategory Fg′(g) (resp., F̃g′(g)).
We write T g′

g (f) = f ′ if T g′
g (L(λ)) = L(λ′) and f, f ′ are the weight diagrams assigned 

to λ, λ′ respectively; similarly, we write T g′
g (f) = f ′

1 ⊕ f ′
2 if T g′

g (L(λ)) = L(λ′
1) ⊕ L(λ′

2).

4.2. Some useful translation functors

Let Transa be the set of the translation functors T g′
g , where g is a core diagram with 

an occupied position a and an empty position a + 1 and g′ is the core diagram obtained 
from g by interchanging the symbols in the positions a, a + 1. For example, Trans1

contains T ◦◦>
◦>◦,, T>◦<<

><◦< and so on.
Each translation functor T g′

g ∈ Transa is an equivalence of categories except for the 
case osp(2m|2n) with a = 0. In the osp(2m + 1|2n)-case (resp., in the osp(2m|2n)-case) 
let Trans be the functors which can be written as compositions of functors from Transa
for all a (resp., a �= 0). All functors in Trans are equivalences of categories.

4.2.1. Case a �= 0
In this case each T ∈ Transa is an equivalence of categories acting on simple modules 

by interchanging the symbols in positions a, a + 1 in the corresponding diagrams (and 
preserving the sign); for example,

T ◦◦>
◦>◦ (× > ∗) = ×∗ >, T ◦◦>

◦>◦,(+◦ > ∗) = + ◦ ∗ >

where ∗ ∈ {×, ◦}.

4.2.2. Case g = osp(2m + 1|2n), a = 0
In this case each T ∈ Trans0 is an equivalence of categories acting on simple modules 
by the following rules:
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> ◦f �→ ◦ > f
×i

> ◦f �→ −×i > f

> ×f �→ +× > f
×i

> ×f �→ +×i+1 > f

for each i > 0 and similar formulae, where > is changed by <.

4.3. Corollary. (i) For T ∈ Trans one has howl(T (f)) = howl(f).
(ii) For any λ ∈ Λ+

m|n, λ
′ ∈ Λ+

m−i|n−i satisfying

core(λ) = core(λ′)

there exists T ∈ Trans such that T (λ), T (λ′) are stable.
(iii) For any module N ∈ Fg(g) there exists T ∈ Trans such that T (N) is stable.

5. DS-functor

In this section we recall the construction of the DS-functor and describe the algebra 
gx. We prove Corollaries 5.9, 5.10 which will be used later. We distinguish the cases 
t = 0, 1, 2 and take g = osp(2m + t|2n).

5.1. The DS-functor was introduced in [3]. We recall definitions and some results 
below. For a g-module M and g ∈ g we set

Mg := KerM g.

5.2. Construction

We set gx := gx/[x, g]; note that gx and gx are Lie superalgebras. For a g-module M
we set

DSx(M) = Mx/xM.

Observe that Mx, xM are gx-invariant and [x, g]Mx ⊂ xM , so DSx(M) is a gad x-module 
and gx-module. Thus DSx : M → DSx(M) is a functor from the category of g-modules 
to the category of gx-modules.

There are canonical isomorphisms DSx(Π(N)) = Π(DSx(N)) and

DSx(M) ⊗ DSx(N) = DSx(M ⊗N).
If N is a finite-dimensional g-module, then DSx(N∗) ∼= (DSx(N))∗.
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5.2.1. Algebraic representations
The DS functor restricts to a functor

DSx : F̃(g) → F̃(gx).

It does not however preserve the subcategory F(g). As already noted in [2] it induces 
a symmetric monoidal functor between the algebraic representations of OSp(m|2n) and 
OSp(m − 2r|2n − 2r).

5.2.2. DS and core diagrams
By [3], Sect. 7 (see also Thm. 2.1 in [17]), the DS-functors preserve the core diagrams, 

i.e. for a core diagram g one has

DSx(Fg(g)) ⊂ F̃g(gx), (2)

where gx := DSx(g). Warning: DSx(Fg(g)) is in general not in Fg(gx), since DSx does 
not preserve F(g).

5.2.3. DS and translation functors
Since DS is a symmetric monoidal functor

DSx(N ⊗ Vst) = DSx(N) ⊗ DSx(Vst).

Since DSx(Vst) is the natural representation of gx, the translation functors “commute 
with the DS-functors”, i.e. the following diagram is commutative

Fg1(g)
T g2
g1−→ Fg2(g)

DSx ↓ DSx ↓

F̃g1(gx)
T g2
g1−→ F̃g2(gx)

5.3. Corollary. For any λ ∈ Λ+
m|n, ν ∈ Λ+

m−s|n−s with

core(λ) = core(ν)

there exist stable weights λst ∈ Λ+
m|n, νst ∈ Λ+

m−s|n−s such that

core(λst) = core(νst);
howl(λ) = howl(λst), howl(ν) = howl(νst)
and [DSx(L(λ) : L(ν)] = [DSx(L(λst) : L(νst)] for each x of rank s.
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Proof. This follows from Corollary 4.3 and the fact that the translation functors com-
mute with DSx (see 5.2.2). �
5.4. DS and automorphisms

Let φ : g′ → g be a homomorphism of Lie superalgebras; for each g-module N denote 
by Nφ the g′-module (the vector space N with the action g′.v := φ(g′)v).

Each φ ∈ Aut(g) induces an isomorphism φ : gx
∼−→ gφ(x) and

DSφ−1(x)(Nφ) = (DSx(N))φ.

Let a ∈ g0 be an ad-nilpotent element and φ := ead a be the corresponding inner 
automorphism of g. If a acts nilpotently on a g-module N , then ea : N ∼−→ Nφ. Therefore

DSφ−1(x)(N) = (DSx(N))φ.

Let G0 = O2m+�×Sp2n be the adjoint group of g0, i.e. the subgroup of Aut g generated 
by ead a, where a ∈ g0 is ad-nilpotent. By above, if N is a finite-dimensional g-module, 
then

DSφ−1(x)(N) = (DSx(N))φ (3)

for any inner automorphism φ ∈ G0.

5.5. Choice of x

We call S ⊂ Δ1 an isotropic set if S is a basis of an isotropic subspace in h∗. Write 
g ∈ g1 as

g =
∑

α∈supp(g)

gα,

where gα ∈ gα \ {0}. Set

Xiso := {x ∈ g1| [x, x] = 0}.

We say that x ∈ Xiso has rank s if G0x contains an element x′ such that supp(x′)
is an isotropic set of cardinality s. By [3], Sect. 5 for osp(2m|2n) with m > n and for 
osp(2m +1|2n) G0 acts transitively on the set of elements of a fixed rank s; for osp(2m|2n)
with m ≤ n this holds for s < m and the elements of rank m form two G0-orbits which 
are σ-conjugated.

The rank of x ∈ Xiso is at most min(m + �, n). Assume that the rank of x is greater 

than m. In this case g = osp(2m + 2|2n), t = 2 and x has rank m + 1. However blocks 
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of type t = 2 in F(osp(2m + 2|2n)) have atypicality at most m, so DSx annihilates the 
modules in such blocks.

Thus we can (and will) always assume that the rank of x is s, where

0 < s ≤ min(m,n). (4)

5.5.1. For each s as in (4) we fix xs of rank s with

supp(xs) := Ss

and set DSs := DSxs
. Notice that xs ∈ gs.

5.5.2. In general different x (even of the same rank) give rise to different functors 
DSx. By (3), x, y induce “the same functor” on F̃(g) if x, y are in the same G0 orbit, i.e. 
we have a commutative diagram

F̃(g)
DSxDSy

F̃(gx)
∼= F̃(gy)

with gx
∼−→ gy. The description of G0-orbits in [3] (see 5.5) implies therefore that x, y of 

the same rank induce “the same functor” on F̃(g) except for g = osp(2m|2n) with x, y
of rank m.

For example, taking a Kac module K(0) of the highest weight zero over osp(2|2) ∼=
sl(2|1) we obtain

DSx(K(0)) ∼= DSσ(x) K(0)σ = 0, DSσ(x)(K(0)) ∼= DSx K(0)σ ∼= C ⊕ ΠC

for a suitable x of rank 1.

5.5.3. Remark
By [2] ker(DS1) = Proj, the thick ideal of projective objects.

5.6. The algebra gx

Take x := xs. Set

Δ+
x := {α ∈ Δ+| (α|Ss) = 0} \ Ss

and denote by gx the algebra generated by g±α with α ∈ Δ+
x . Clearly, gx is a subalgebra 
of gad x. By [3], DSx(g) = gad x/[x, g] can be identified with gx. One has
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gx
∼= osp(2(m− s) + t|2(n− s))

and hx := gx ∩ h is a Cartan subalgebra of gx. The triangular decomposition given by

Δ+(gx) := Δ+
x

is of the same form as the triangular decomposition fixed in 2.2. We denote the corre-
sponding base by Σx and the Weyl vector by ρx.

5.6.1. Examples
Take s := 2.
For osp(11|8) (m = 5, n = 4, t = 1) we have gx ∼= osp(7|4) with

Σ = {ε1 − ε2, ε2 − δ1, δ1 − ε3, ε3 − δ2, δ2 − ε4, ε4 − δ3, δ3 − ε5, ε5 − δ4, δ4}
Σx = {ε1 − ε2, ε2 − δ1, δ1 − ε3, ε3 − δ2, δ2},
2ρ = δ4 + δ3 + δ2 + δ1 − ε5 − ε4 − ε3 − ε2 + ε1,

2ρx = δ2 + δ1 − ε3 − ε2 + ε1.

For osp(12|8) we have gx ∼= osp(8|4) and ρ = ε1 = ρx. In this case

Σ = {ε1 − ε2, ε2 − δ1, δ1 − ε3, ε3 − δ2, δ2 − ε4, ε4 − δ3, δ3 − ε5, ε5 − δ4, δ4 ± ε6};

for t = 0 we have m = 6, n = 4 and

Σx = {ε1 − ε2, ε2 − δ1, δ1 − ε3, ε3 − δ2, δ2 ± ε4};

and for t = 2 we have m = 5, n = 4 and

Σx = {ε1 − ε2, ε2 − δ1, δ1 − ε3, ε3 − δ2, δ2 ± ε6}.

5.6.2. Recall that h∗ has a basis {εi}m+�
i=1 ∪{δi}ni=1 (where � = 0 for t = 0, 1 and � = 1

for t = 2); it is easy to see that h∗x has a basis {εi}m−s
i=1 ∪ {δi}n−s

i=1 ∪ {εm+�} for t �= 0 and 
{εi}m−s

i=1 ∪ {δi}n−s
i=1 otherwise. For the restriction map γ �→ γ|hx

we have

εi �→ εi for i = 1, . . . ,m− s; δi �→ δi for i = 1, . . . , n− s;
εm−i �→ 0, δn−i �→ 0 for i = 0, . . . , s− 1;

and, for � = 1, εm+1 �→ εm+1. One has ρ|hx
= ρx.

Let {ε′i}m+�−s
i=1 ∪ {δ′i}n−s

i=1 be the standard basis in (h′)∗, where h′ is the Cartan subal-
gebra of osp(2(m − s) + t|2(n − s)). The isomorphism gx

∼−→ osp(2(m − s) + t|2(n − s))
gives εi → ε′i for i = 1, . . . , m − s, δj �→ δ′j for j = 1, . . . , n − s and εm+1 �→ εm+1−s if 
� = 1.

For t = 0, 2 we denote by σx the analogue of σ for gx; note that Σx is σx-invariant. 

Retain the notation of 2.3.1.
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5.7. Lemma. Take g := osp(2m|2n).
(i) If N is finite-dimensional, then DSx(Nσ) ∼= (DSx(N))σx if rank x < m;
(ii) Let x be of rank 1. If L (resp., L′) is a simple finite-dimensional g (resp., gx)-

module, then

[DSx(L) : L′] = [DSx(Lσ) : L′] = [DSx(L) : (L′)σx ].

Remark: The example in 5.5.2 shows that the restriction rank x < m is necessary.

Proof. For each s with 0 < s ≤ min(m − 1, n) take y ∈ Xiso with

supp(y) = {εm−i − δn+1−i}si=1.

Note that y has rank s; by (1), σ(y) = y. Moreover, σ induces the involution σy on the 
algebra DSy(g) ∼= osp(2(m + � − s)|2(n − s)). Using 5.4 we obtain (i) for x := y. By 5.5, 
this implies (i) for each x ∈ G0y and thus establishes (i) for all x.

Consider the formula in (ii). Notice that L∗ ∼= L if m is even and L∗ ∼= Lσ if m is odd 
(since − Id lies in the Weyl group W (osp(2m|2n)) if and only if m is even). If m is odd, 
then (L′)∗ ∼= L′ and DSx(Lσ) ∼= DSx(L∗) ∼= (DSx(L))∗ which gives the first equality. 
Similarly, if m is even, we obtain [DSx(L) : L′] = [DSx(L) : (L′)σx ]. For m > 1, (i) 
implies the second equality and this establishes the formula. For m = 1 one has σx = Id, 
so [DSx(L) : L′] = [DSx(L) : (L′)σx ]; this completes the proof. �

5.8. Lemma. Let λ ∈ Λ(t)
m+�|n be a stable weight of atypicality k and let x := xs. If 

ν ∈ h∗ satisfies

ν ≤ λ; ν|hx
is dominant ; core(λ) = core(ν|hx

),

then ν|hx
is stable.

Proof. Write

λ + ρ =:
m+�∑
i=1

aiεi +
n∑

j=1
bjδj , ν + ρ =:

m+�∑
i=1

a′iεi +
n∑

j=1
b′jδj .

Set ν′ := ν|hx
. Since ρ|hx

= ρx we obtain

ν′ + ρx = (ν + ρ)|hx
.

Since ν′ is dominant and core(λ) = core(ν′) we have ν′ ∈ Λ(t)
m+�−s|n−s. If � = 1 we 
have t = 2 and thus a′m+1 = 0. Therefore for all t we have
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ν′ + ρx = (ν + ρ)|hx
=

m−s∑
i=1

a′iεi +
n−s∑
j=1

b′jδj .

If k = 0, then s = 0 and ν′ = ν is stable. If ν′ is typical, it is stable. Thus we assume 
that λ, ν′ are atypical. Since λ is stable, 3.8.1 gives

core(ν′) = core(λ) =
m−k∑
i=1

aiεi +
n−k∑
j=1

bjδj . (5)

Moreover, by 3.8.1, for stability of ν′ it is enough to verify that ai = a′i for i = 1, . . . , m −k

and bj = b′j for j = 1, . . . , n − k. Let p (resp., q) be minimal such that ap �= a′p (resp., 
bq �= b′q). By above it suffices to show that

m− p, n− q < k. (6)

Using (5) (and the atypicality of ν′ for t = 0 case) we obtain

ap ∈ {a′i}m−s
i=p if p ≤ m− k; bq ∈ {b′j}n−s

i=q if q ≤ n− k. (7)

The assumption ν ≤ λ gives

λ− ν = (ap − a′p)εp + (bq − b′q)δq +
∑
i>p

(ai − a′i)εi +
∑
j>q

(bj − b′j)δj ∈ NΣ. (8)

Consider the case when εp − δq ∈ Δ+. Then (8) implies ap > a′p. Since ν′ is dominant

a′i ≤ a′p < ap for i = p, p + 1, . . . ,m− s,

so p ≥ m − k by (7). Notice that δn−j − εm−i ∈ Δ+ for j > i, so the assumption 
εp−δq ∈ Δ+ gives n −q ≤ m −p and thus implies (6). For the remaining case δq−εp ∈ Δ+

the proof is similar. �
Taking s = 0 we obtain the following corollary, which is a reformulation of Lemma 

6.2 in [17].

5.9. Corollary. Assume that λ, ν are dominant weights, λ is stable and

core(λ) = core(ν) ν ≤ λ.
Then ν is stable.
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5.10. Corollary. If N ∈ Fg is stable, then DSx(N) is stable.

Proof. Assume that [DSx(N) : Lgx
(ν′)] �= 0. Then ν′ is dominant and

core(ν′) = g.

Let v be a vector in DSs(N) = Nx/xN which has weight ν′. By [8], Lem. 2.3 we can 
choose a preimage v of v in the space∑

μ∈X

Nx
μ , where X := {ν ∈ Ω(N)| ν|hx

= ν′, (ν|Ss) = 0}.

Take ν ∈ X. Since ν ∈ Ω(N) there exists a stable dominant weight λ (a maximal weight 
in Ω(N)) such that

ν ≤ λ, core(λ) = g.

In the light of 5.6.2 the condition (ν|Ss) = 0 implies

core(ν) = core(ν|hx
) = g.

By Lemma 5.8, ν′ is stable. �
6. Reduction to principal blocks

In this section we reduce the computation of multiplicities [DSs(L(λ)) : Lgx
(ν′)] to 

the case of principal blocks.
In this section g stands for a core diagram of type t for g := osp(2m + t|2n). Let 

μ ∈ Λ(t)
m−k|n−k be the typical weight corresponding to g.

6.1. Notation

We denote by Fpr(gk) the principal block for gk:

Fpr(gk) =
{

F∅(osp(2k + t|2k) for t = 0, 1
F>(osp(2k + 2|2k) for t = 2.

We denote by Fg
st the subcategory of Fg(g) consisting of stable modules. For t = 0, 1

this category is zero if and only if the zero position of g is non-empty; for t = 2 this 
category is always non-zero.

We denote by Λ+(g; i) the set of diagrams f with the following properties:
core(f) = g and all symbols × lie in the positions 0, . . . , i.
We denote by Fg

i (g) the Serre subcategory of F(g) generated by the modules L(λ) with 
λ ∈ Λ+(g; i) ∩ Λm|n and denote by Fpr

i (gk) the corresponding subcategory of Fpr(gk). 

Note that Fg(g) can be viewed as a “limit” of subcategories Fg

i (g).
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6.2. The functor Res for (t; k) �= (0; 0)

We assume that Fg(g) is a non-principal block and Fg
st(g) �= 0. This means that we 

exclude the case t = 0, k = 0, m > 0, since in this case Fg(g) is a direct sum of two 
blocks, and that g has a non-empty symbols at a non-zero position. One has

Fg
st(g) = Fg

q (g),

where q + 1 is the coordinate of the first occupied non-zero position in g.
We retain the notation of A.1. Fix z ∈ h such that α(z) = 0 for α ∈ Δ(gk) and 

α(z) ∈ R>0 for α ∈ Δ+ \ Δ(gk). Then

gz = gk + h = gk × h′′,

where h′′ is the centralizer of gk. Set a := (μ − ρ)(z) and define the functor Res := Resa
using the construction of A.2 for l := gk and μ as above.

6.2.1. Proposition. The functor

Res : Fg
st(g)

∼−→ Fpr
q (gk)

is an equivalence of the categories and

Res(L(f)) = L(howl(f))

for each stable f ∈ Λ(t)
m+�|n with core(f) = g.

Proof. Take h′ := gk ∩ h. Then h = h′ × h′′. Setting

E := {εi}m+�
i=1 , D := {δi}ni=1, E′ := {εi}m+�

i=m+1−k, D′ := {δi}nn+1−k,

we see that (h′)∗ is spanned by E′ ∪D′ and (h′′)∗ is spanned by (E \ E′) ∪ (D \D′).
Let υ : h∗ → (h′)∗, υ′′ : h∗ → (h′′)∗ be the projections given by the decomposition 

h = h′ ⊕ h′′. Notice that μ ∈ (h′′)∗ and set

A := {λ ∈ Λ+
m+�|n| core(λ) = g, υ′′(λ) = μ− υ′′(ρ)}, A′ := υ(A).

One has

A = {λ ∈ Λ+
m+�|n| core(λ) = g, υ′′(λ) = μ− υ′′(ρ)}

= {λ ∈ Λ+
m+�|n| core(λ) = g, υ′′(λ + ρ) = μ}.

In the light of 3.8.1 we get A = Λ+
m+�|n(g; q), so Fg

st(g) = Fg
q (g) = F(A). By Corol-

lary 5.9, Λ+
m+�|n(g; q) satisfies the assumption (22). By A.5, Res provides an equivalence 

∼
of categories Fg
st(g) −→ F(A′).
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Take λ ∈ A. Since λ is stable, 3.8.2 implies that

λ + ρ = μ + howl(λ) + ρk,

where ρk is the Weyl vector of gk. Note that ρk = υ(ρ).
Since μ ∈ (h′′)∗ and howl(λ) ∈ (h′)∗, we have υ(λ) = howl(λ), so

A′ = υ(Λ+
m+�|n(g; q)) = Λ+(gpr; q),

where gpr is empty for t = 0, 1 and gpr => for t = 2. Hence F(A′) = Fpr
q (gk). This 

completes the proof. �
6.2.2. Retain the notation of 3.7.8.
Corollary. For each λ, ν ∈ Λ(t)

m|n one has

dex(λ) = dex(ν) =⇒ Ext1(L(λ), L(ν)) = 0.

Proof. For the core-free diagrams the assertion is established in [9]. The general case 
follows from Proposition 6.2.1 (note that Ext1(L(λ), L(ν)) = 0 if λ is typical). �
6.2.3. Remark

Consider the case k = 0 (and t �= 0). In this case Fg
st(g) = Fg(g) is a typical block 

containing L(μ); this block is isomorphic to the category of finite-dimensional even vector 
spaces.

For t = 1 one has gk = 0 and Fpr
q (gk) = F(gk) is the category of finite-dimensional 

even vector spaces (Res(L(μ)) = L(∅) = C).
For t = 2 one has gk = C and F(gk) is the category of finite-dimensional gk-module 

with the zero action of gk (since t = 2), i.e. (Res(L(μ)) is the trivial gk-module).

6.3. DSx and Res

Take x := xs. Since DSs(Fg) = 0 for s > k we assume

0 < s ≤ k.

By 5.5.1 one has x ∈ gs ⊂ gk.
Let (gx)i be the subalgebra of gx constructed for gx in the same way as gi to g. 

Consider the base Σx
k−s ⊂ Δ+(gx). We define the functors Res, Resx as in 6.2: we take

z ∈ h such that α(z) = 0 for α ∈ Σk, α(z) = 1 for α ∈ Σ \ Σk

zx ∈ hx such that α(zx) = 0 for α ∈ Σx
k−s, α(zx) = 1 for α ∈ (Σx \ Σx

k−s)
and set a := (μ − ρ)(z), ax := (μ − ρx)(zx). We obtain Res : Fg
st(g) −→ Fpr

q (gk) and



M. Gorelik, Th. Heidersdorf / Advances in Mathematics 394 (2022) 108012 27
Resx : F̃g
st(gx) −→ F̃pr

q ((gx)k−s)

given by

Res(N) := {v ∈ N | zv = a}, Resx(N) := {v ∈ N | zxv = axv}.

6.3.1. Lemma. One has DSx(gk) = (gx)k−s. In addition, zx = z, ax = a except for 
the case t = 0, k = s.

Proof. The partial order ≥ gives a total order on the standard basis of h∗, i.e.

{εi}m+�
i=1 ∪ {δj}nj=1 = {ei}m+n+�

i=1 , e1 < e2 < . . . < em+n+�

(where e1 = δn for osp(2m + 1|2n) and e1 = εm+� for osp(2m + 2|2n)). Let {e∗i }m+n+�
i=1

be the dual basis of h.
Denote the base of DSx(gk) by (Σk)x. For k = s we have (Σk)x = ∅ = (Σx)0.
In the t = 0-case one has

Σ = {e1 + e2, e2 − e1, e3 − e2, . . . , em+n − em+n−1},
Σk = {e1 + e2, e2 − e1, . . . , e2k − e2k−1}
Σx = {e2s+1 + e2s+2, e2s+2 − e2s+1, . . . , em+n − em+n−1} if s < m

Σx = {2e2s+1, e2s+2 − e2s+1, . . . , em+n − em+n−1} if s = k = m

(Σx)k−s = {e2s+1 + e2s+2, e2s+2 − e2s+1, . . . , e2k − e2k−1} = (Σk)x.

In the t = 1-case one has

Σ = {e1, e2 − e1, e3 − e− 2, . . . , em+n − em+n−1},
Σk = {e1, e2 − e1, . . . , e2k − e2k−1}
Σx = {e2s+1, e2s+2 − e2s+1, e2s+3 − e2s+2, . . . , em+n − em+n−1}
(Σx)k−s = {e2s+1, e2s+2 − e2s+1, . . . , e2k − e2k−1} = (Σk)x.

In both cases

Σ \ Σk = {e2k+1 − e2k, e2k+2 − e2k+1, . . . , em+n − em+n−1}

and

z = e∗2k+1 + 2e∗2k+2 + . . . + (m + n− 2k)e∗m+n.

One readily sees that z ∈ hx and that z = zx except for the case t = 0, k = s.
In the t = 2-case one has

Σ = {e1 + e2, e2 − e1, e3 − e2, . . . , em+n+1 − em+n},
Σk = {e1 + e2, e2 − e1, . . . , e2k − e2k−1, e2k+1 − e2k}
Σx = {e1 + e2s+2, e2s+2 − e1, e2s+3 − e2s+2, . . . , em+n+1 − em+n}
(Σx) = {e + e , e − e , . . . , e − e } = (Σ )x.
k−s 1 2s+2 2s+2 2s+1 2k+1 2k k
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Therefore

z = e∗2k+2 + 2e∗2k+3 + . . . + (m + n− 2k)e∗m+n+1 = zx.

By 5.6.2, ρx = ρ|hx
; since zx ∈ hx we get

ax − a = (ρx − ρ)(zx) = 0.

Finally, (Σx)k−s = (Σk)x gives DSx(gk) = (gx)k−s as required. �
6.3.2. Assume that 0 < s ≤ k and s �= k for t = 0. Combining Lemma 6.3.1 and 

5.10, 6.2.1 we obtain the following diagram

Fg
st(g)

Res−→ Fpr
q (gk)

DSx ↓ DSx ↓

F̃g
st(gx)

Resx−→ F̃pr
q ((gx)k−s)

(9)

where Res, Resx are equivalence of categories.
Let us show that this diagram is commutative. Take N ∈ Fg;q(g). Since z = zx ∈ hx, 

the spaces Nx and xN are z-stable, so

Resx(DSx(N)) = (DSx(N))a = (Nx)a/(xN)a.

On the other hand,

DSx(Res(N)) = DSx(Na) = (Na)x/(xNa).

Since [x, z] = 0 one has (xN)a = x(Na) and (Nx)a = (Na)x. Hence Resx(DSx(N)) =
DSx(Res(N)) as required.

6.3.3. The case t = 0 and k = s

Consider the case t = 0 and k = s > 0. Note that

Res(N) := {v ∈ N | zv = μ(z)v}, (10)

where z is as in 6.3. From the proof of Lemma 6.3.1 we see that z ∈ hx.
Note that (gx)k−s = 0, so F in((gx)k−s) is the category of finite-dimensional super-

vector spaces, which we denote by sV ect. Define
Resx : F in(gx) → sV ect
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by formula (10). Using the arguments of 6.3.2 we obtain the following commutative 
diagram

Fg
st(g)

Res−→ Fpr
q (gk)

DSx ↓ DSx ↓

F̃g
st(gx)

Resx−→ sV ect

By 6.2.1, Res is the equivalence of categories; we will describe Resx below. Set

L′ := Lgx
(μ).

From the proof of Lemma 6.3.1 we see that z(α) = {1, 2} for each α ∈ Σx, so Resx(L′) =
C. If k = s = m, then F̃g

st(gx) = F̃g(gx) is a semisimple category with Irr
(
F̃g(gx)

)
=

{L′, Π(L′)} and the above formula describes Resx; in particular Resx is an equivalence 
of categories.

If s = k < m, then F̃g
st(gx) = F̃g(gx) is a semisimple category and

Irr
(
F̃g(gx)

)
= {L′,Π(L′), (L′)σx ,Π((L′)σx)}.

The eigenvalues of z on (L′)σx = Lgx
(σ(μ)) lie in the set σx(μ)(z) −N. Recall that t = 0

and μ has the diagram with the sign +. Using the notation of the proof of Lemma 6.3.1
we have

(μ− σx(μ))(z) = 2(μ|e∗2k+1) > 0,

so Resx
(
(L′)σx)

)
= 0. Hence the action of Resx is

Resx(L′) = C, Resx(Π(L′)) = ΠC, Resx((L′)σx) = Resx(Π((L′)σx)) = 0.

6.4. Graded multiplicity

Retain notation of 2.3.1. We fix r and denote the graded multiplicity [DSr(L(f)) :
L(f ′)] by f

f ′ .
Note that f

f ′ = 0 if core(f) �= core(f ′) or atyp f − atyp f ′ �= r (where atyp stands for 
the atypicality, i.e. the number of the symbols × in the diagram).

6.4.1. Case: osp(2n + 1|2n): switch functor
By [11], Lemma 19 the translation functor T ∅

∅ (“switch functor”) acts on simple mod-
ules L(μ) ∈ F∅ as follows:
T ∅
∅ (L(μ)) = L(μsw),
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where the diagram of μsw is obtained form the diagram of μ by sign change (μsw = μ if 
the diagram of μ does not have a sign). Since DS commutes with the translation functors, 
we get

[DSr(L(λ)) : L(ν)] = [DSr(L(λsw)) : L(νsw)].

6.4.2. Let σ(f) be the diagram obtained from f by the change of sign (for osp(2m|2n)
this notation was used before).

6.4.3. Corollary. Let f, f ′ be weight diagrams with core(f) = core(f ′). One has

(i) σ(f ′)
σ(f) = f ′

f except for t = 0, howl(f) = ∅;
(ii) f ′

f = howl(f ′)
howl(f) .

Proof. For t = 1 the formula σ(f ′)
σ(f) = f ′

f follows from 6.4.1 and for t = 2 one has σ(f) = f , 
σ(f ′) = f ′. Lemma 5.7 (i) gives σ(f ′)

σ(f) = f ′

f for t = 0 except for the case howl(f) = ∅.
Combining 6.3.2 and Corollary 5.3 we obtain f ′

f = howl(f ′)
howl(f) for all cases except for 

t = 0, rank x = atyp(f ′) =: r. In the remaining case f ′ is an osp(2m|2n)-diagram and 
f is a typical osp(2(m − r)|2(n − r))-diagram. By 6.3.3, f

′

f = howl(f ′)
howl(f) if r = m or if f

has the sign +. Consider the remaining case when r < m and f has the sign − (f has a 
sign, since it is typical with t = 0). By Lemma 5.7 (i) one has σ(f ′)

σ(f) = f ′

f (since r < m). 
Since σ(f) has sign + we have σ(f ′)

σ(f) = howl(σ(f ′))
howl(σ(f)) and the required formula f

′

f = howl(f ′)
howl(f)

follows from the fact that σ commutes with howl for t = 0. �
6.4.4. Remark

Theorems 8.2, 9.3 imply σ(f ′)
σ(f) = f ′

f in the remaining cases.

7. Recursive formulae for [DSx(L(λ)) : Lgx(ν)]

Using that DS commutes with translation functors, we establish recursive formulas 
for the multiplicities [DSx(L(λ)) : Lgx

(ν)]. This will ultimately allow us to reduce the 
computation of the multiplicities for DS1 to the case g = osp(2 + t|2). For a similar 
reduction in the gl(m|n)-case see [14].

We fix r and retain the notation of 6.4.

7.1. Translation functors

Recall that DS commutes with the translation functors. Let g0, g1 be two core dia-
grams. Consider the translation functors
T g0
g1

: F̃g1(g) → F̃g0(g), T g0
g1

: F̃g1(gx) → F̃g0(gx).
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Since translation functors are exact, they induce morphisms on the Grothendieck ring. 
For N ∈ Fg1(g) and L′ ∈ Irr(gx)g0 we obtain

[DSr(T g0
g1

(N)) : L′] = [T g0
g1

(DSr(N)) : L′]
=

∑
L1∈Irr(gx)g1

[DSr(N) : L1][T g0
g1

(L1) : L′]. (11)

7.1.1. Assume that the number of core symbols in g0 is larger than the number of 
core symbols in g1, i.e. the atypicality of g1 is larger than the atypicality of g0. We will 
use the following results of [12], Lemmatta 7, 13, 14:

the image of a simple module L ∈ Irr(gx)g1 is either zero or simple;
for L1, L2 ∈ Irr(gx)g1 with T g0

g1
(L1) ∼= T g0

g1
(L2) �= 0 one has L1 ∼= L2.

7.1.2. These results will be sufficient for us. A complete description of translation 
functors on irreducible modules and projective covers can be obtained from [4], [5], [6].

7.1.3. Take g0, g1 satisfying the assumption in 7.1.1. For each L′ ∈ Irr(gx)g0 there 
exists at most one (up to isomorphism) L1 ∈ Irr(gx)g1 such that T g0

g1
(L1) ∼= L′. Then 

(11) gives for N ∈ Fg1(g)

[DSr(T g0
g1

(N)) : L′] = [T g0
g1

(DSr(N)) : L′] = [DSr(N) : L1].

In particular,

[DSr(N) : L1] �= 0 =⇒ T g0
g1

(N) �= 0. (12)

Now take N := L(λ) and ν such that [DSr(L(λ)) : Lgx
(ν)] �= 0 and T g0

g1
(Lgx

(ν)) �= 0. 
Then, by 7.1.1,

T g0
g1

(Lgx
(ν)) = Lgx

(ν1)

for some ν1 and T g0
g1

(L(λ)) is either zero or simple. By above, T g0
g1

(L(λ)) �= 0, so

T g0
g1

(L(λ)) = L(λ1)

for some λ1. Using (11) and Corollary 6.4.3 we conclude

f(λ)
f(ν) = howl(f(λ1))

howl(f(ν1))
, (13)
where f(λ) stands for the weight diagram of λ.
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7.2. Translation functors Tu

We describe some translation functors via their effect (called elementary change in [12], 
Section 6.3) on core/weight diagrams. Let a be a non-negative integer. For each diagram 
f we denote by posa(f) the subdiagram corresponding to the positions a, a + 1. For a 
core diagram g1 with posa(g1) = ◦◦ we denote by φ′

a(g1) the core diagram obtained from 
g1 by changing posa(g1) = ◦◦ to posa(g) =><; for instance,

φ′
1(< ◦◦ >) =<><> .

We denote by Ta the functor which acts as Tφ′
a(g1)

g1 on F̃g1 with posa(g1) = ◦◦ and by 
zero on F̃g′ with posa(g′) �= ◦◦. Note that Ta reduces the atypicality by 1.

7.2.1. Take u > 0. For a diagram f with posu(f) = ×◦ we define the diagram 
φu(f) obtained from f by changing ×◦ in the positions (u, u + 1) to >< (i.e., f and 
φu(f) have the same signs and the same symbols in all positions except u, u + 1 and 
posu(φu(f)) =><). For instance, φ1(× ××◦) is not defined and φ2(× ××◦) = ×× ><.

7.2.2. By [12], for u > 0 one has

Tu(L(μ)) = L(φu(μ))

if φu(μ) is defined and Tu(L(μ)) = 0 otherwise.

7.3. Corollary. For u > 0 one has

f ′
u ××f ′

fu × ◦f = f ′
u ◦ ×f ′

fu × ◦f = f ′
u ◦ ◦f ′

fu × ◦f = 0

(with all possible signs) and

f ′
u × ◦f ′

fu × ◦f = f ′
uf

′

fuf

where fu, f ′
u stands for the subdiagrams corresponding to the positions 0, 1, . . . , u − 1.

Proof. Recall from (12) that for irreducible N = L(λ)

[DSr(T g0
g1

(L(λ)) : T g0
g1

(L1)] = [DSr(L(λ) : L1].

Take u > 0. Take f̃ = fu × ◦f (i.e., posu(f̃) = ×◦). Combining (12) and 7.2.1 we get 
f̃ ′

f̃
= 0 if posu(f̃ ′) �= ×◦; this gives the first formula. If f̃ ′ = f ′

u×◦f ′, then Tu transforms 

f̃ ′ to f ′

u >< f ′. Combining 7.2.1 and (13) we have
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f ′
u × ◦f ′

fu × ◦f = howl(f ′
u >< f ′)

howl(fu >< f) .

Using howl(fu >< f) = howl(fuf) we obtain the second formula. �
7.4. Reduction to the case ν = 0

Let f be a weight diagram and u be the coordinate of the rightmost symbol × in 
f . Using 6.4.3 (ii) and 7.3 we reduce the computation of f

′

f to the situation when f, f ′

are core-free and u = 0; in the light of 6.4.3 (i) we can assume that f has sign − for 
t = 1 (for t = 0, 2 the diagram f does not have sign if u = 0). Notice that in this case 
λ(f ′) = 0, i.e. we reduced the problem to the computation of [DSr(L(λ)) : Lgx

(0)] for 
g = osp(2n + t|2n).

For gl(m|n) a similar reasoning reduces the computation of [DSr(L(λ)) : L(ν)] to the 
case when ν has the empty diagram, i.e. to the case when gx = 0 (see also [14]). In the 
osp-case this is done in Corollaries 7.5.2, 7.6.4 below.

7.5. The case osp(2m + 1|2n)

Consider the case g = osp(2m + 1|2n). We assume, as always, that “the signs disap-
pear” if the zero position is empty, i.e. ± ×i−1 f stands for ◦f for i = 1.

7.5.1. By [12], for the translation functor T0 := T><
∅ one has T0(L(μ)) �= 0 if and 

only if the diagram of μ has the sign + and pos0(μ) = ×i◦ for i > 0; moreover,

T0(L(+ ×i ◦f) = L(
×i−1

> < f).

Using (12) we obtain for j ≥ 1

f̃

+ ×j ◦f �= 0 =⇒ f̃ = + ×p ◦f ′ for some p ≥ 1.

7.5.2. Lemma. For p, i ≥ 1 one has

+×p◦◦f
+×i = −×p−1f

−×i−1
+×p◦×f

+×i = +×pf
−×i−1

Proof. Using (13) for T0 we obtain for ∗ ∈ {◦, ×}

+×p◦∗f
+×i =

×p−1
> <∗f
×i−1
> <

.

One has
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howl(
×p−1

> < ∗f) =
{

−×p−1 f if ∗ = ◦
+ ×p f if ∗ = ×

and howl(
×i−1

> <) = −×i−1. Now (13) gives

+×p◦◦f
+×i = −×p−1f

−×i−1
+×p◦×f

+×i = +×pf
−×i−1

as required. �
7.5.3. Corollary. Take i ≥ 1. One has

−×p ◦...◦︸︷︷︸
2i−1 times

×f

−×i = −×p−i+1f
∅

−×p◦...◦︸︷︷︸
j times

f

−×i =
−×p−i ◦...◦︸︷︷︸

j−2i times

f

∅ for j ≥ 2i.

Moreover, f̃
−×i = 0 if f̃ is not as above, i.e. f̃ �= − ×p ◦...◦︸︷︷︸

j times

f for some p ≥ i and 

j ≥ 2i − 1.

Proof. The statement follows by induction from Lemma 7.5.2 and Corollary 6.4.3. �
7.6. The case osp(2m|2n)

Recall that the simple OSp(2m|2n)-modules are in one-to-one correspondence with 
the unsigned diagram (see 3.1.8). For a non-empty diagram f we will use the sign ◦f
for + ◦ f ⊕− ◦ f , i.e. L(◦f) is a simple OSp(2m|2n)-module which is the direct sum of 
osp(2m|2n)-modules L(+ ◦ f) and L(− ◦ f).

For an empty diagram we have L(∅) = C; notice that

howl(±◦ >) = ∅; howl(◦ >) �= ∅.

7.6.1. For the translation functor T0 := T><
∅ one has T0(L(μ)) �= 0 if and only if 

pos0(μ) = ×i◦ for i > 0 and

T0(L(×i ◦ f)) = L(
×i−1

> < f).

Using 7.1.3 we obtain for j ≥ 1

f̃ p ′

×j ◦ f �= 0 =⇒ f̃ = × ◦ f for some p > 0. (14)
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7.6.2. The translation functor T ◦>
> is given by

T ◦>
> (L(

×p

> ◦f) = L(×p > f), T ◦>
> (L(

×p

> ×f) = L(×p+1 > f)

for each p ≥ 0 (where, L(◦f) = L(+ ◦ f) ⊕ L(− ◦ f)).

7.6.3. The translation functor T>
◦> is adjoint to the functor T ◦>

> . It is given by

T>
◦>(L(±◦ > f) = L(> ◦f), T>

◦>(L(×p > f)) = L(
×p

> ◦f) ⊕ L(
×p−1

> ×f)

for each p > 0 (there is a misprint in [12]).

7.6.4. Lemma. Take i, p ≥ 1.

(i) ×
p◦f
×i =

×p−1
> f
×i−1
>

×p

> ◦f
×i

>

= ×pf
×i .

(ii) 
×p−1
> ×f

×i

>

= 0.

(iii) 
×p

> ◦f
> =

×p−1
> ×f
> = ×pf

∅ .

Proof. Using (13) for T0 we obtain

×p◦f
×i =

×p−1
> <f
×i−1
> <

=
×p−1
> f
×i−1
>

(15)

which establishes the first formula. Using 7.1 for T ◦>
> we obtain

×pf
×i = ×p>f

×i> = [DSr(T ◦>
> (L(

×p

> ◦f)) : L(×i >)]

=
∑

[DSr(L(
×p

> ◦f)) : L1][T ◦>
> (L1) : L(×i >)]

= [DSr(L(
×p

> ◦f)) : L(
×i

> )] + [DSr(L(
×p

> ◦f)) : L(
×i−1

> ×)]

=
×p

> ◦f
×i

>

+
×p

> ◦f
×i−1
> ×

.

By Corollary 7.3 the second summand in the last formula is zero; this implies the second 

formula. Similarly, T ◦>
> (L(

×p−1

> ×f)) = L(×p > f) implies

×pf
×i =

×p−1
> ×f

×i

>

+
×p−1
> ×f
×i−1
> ×

.

By (14) if f = ×f ′, then ×pf
×i = 0, so the both summands in the right-hand side are 

×p−1
> ××f ′
equal to 0; in particular, ×i

>

= 0.
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If f = ◦f ′ we have

×p◦f ′

×i =
×p−1
> ×◦f ′

×i

>

+
×p−1
> ×◦f ′

×i−1
> ×

=
×p−1
> ×◦f ′

×i

>

+
×p−1
> f ′

×i−1
>

.

Using (i) we conclude

×p−1
> ×◦f ′

×i

>

= 0.

This establishes (ii).
Using 7.1 for T ◦>

> we obtain

×pf
∅ = ×p>f

+◦> = [DSr(T ◦>
> (L(

×p

> ◦f)) : L(+◦ >)]

=
∑

[DSr(L(
×p

> ◦f)) : L1][T ◦>
> (L1) : L(+◦ >)]

= [DSr(L(
×p

> ◦f)) : L(>)] =
×p

> ◦f
>

and, similarly,

×pf
∅ =

×p−1
> ×f
>

.

This establishes (iii). �

7.6.5. Corollary. Take i ≥ 1. One has ×
p×f
×i = 0 and ×

p◦f
×i =

×p−1
> f
×i−1
>

. Moreover,

×p

> ◦...◦︸︷︷︸
j times

f ′

×i

>

=

×p−i

> ◦...◦︸︷︷︸
j−2i times

f ′

>

and 
×p

> f
×i

>

�= 0 implies that p ≥ i and the diagram f is as above (i.e., f = ◦...◦︸︷︷︸
j times

f ′ for 

some j ≥ 2i).

8. Computation of DS1(L) in terms of arc diagrams

8.1. Arc diagrams

We assign to each core-free diagram an arc diagram Arc(f); if f is contains at most 
one × at the zero position (“gl-type”), the corresponding arc diagram coincides with 
the usual arc diagram introduced in [12]. It differs from the arc- or cup diagrams of 
[4]. Advantages of our weight and arc diagrams are that they can immediately be read 

off from the weight λ and describe the effect of DS very nicely. On the other they
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do not connect to Khovanov algebras of type D and therefore to the Kazhdan-Lusztig 
combinatoric of parabolic category O.

An arc diagram is the following data: a diagram f , where the symbols × at the zero 
position are drawn vertically and a collection of non-intersecting arcs. Each arc connects 
one symbol × (the left end) with one or two empty symbols according to the following 
rules:

if the symbol × has non-zero coordinate, the arc connects this symbol with one empty 
symbol;

for � = 0 (i.e., t = 0, 1) the lowest symbol × in the zero position, is connected by an 
arc with one empty symbol and the other symbols × in the zero position are connected 
with two empty symbols;

for � = 1 (i.e., t = 2) all symbols × in the zero position are connected with two empty 
symbols.

An empty position in f is called free in the arc diagram if this position is not an end 
of an arc.

We say that an arc is supported by a symbol × if this symbol is the left end of the 
arc; if the arc is supported by a symbol × with the coordinate a we denote this arc by 
arc(a; b) (resp., arc(0; b1, b2)) where b (resp., b1 < b2) is the coordinate of the right end 
(resp., right ends) of the arc.

We remark that we can similarly define an arc diagram for any weight diagram by 
just fixing and ignoring the core symbols.

8.1.1. Partial order
We consider a partial order on the set of arcs by saying that one arc is smaller than 

another one if the first one is “below” the second one, that is
arc(a; b) > arc(a′; b′) if and only if a < a′ < b′ < b;
arc(0; b1, b2) > arc(a′; b′) if and only if b′ < b2;
arc(0; b1, b2) > arc(0; b′1, b′2) if and only if b′2 < b2.
Since the arcs do not intersect, one has

arc(a; b) > arc(a′; b′) ⇐⇒ a < a′ < b

arc(0; b1, b2) > arc(a′; b′) ⇐⇒ a′ < b2

and any two distinct arcs of the form arc(0; b1, b2), arc(0; b′1, b′2) are comparable: either 
arc(0; b1, b2) > arc(0; b′1, b′2) or arc(0; b1, b2) < arc(0; b′1, b′2).

8.1.2. Definition
We assign to a core-free diagram f the arc diagram Arc(f) with the following prop-

erties:
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each symbol × is the left end of exactly one arc;
there are no free positions under the arcs.

8.1.3. Example
The weight diagram below does not have a sign for t = 0 (g = osp(12|12)) or have 

one of the signs ± for t = 1 (g = osp(13|12)).

0 1 2 3 4 5 6 7 8 9 10 11 12

Arc diagram for ×2 ◦ × ◦ ◦ × × ◦ ◦ ◦ ◦ × ◦

8.1.4. Examples
In the following diagrams we ignore signs. Note that in case the arc connects × with 

two empty symbols, this still counts as one arc (also for Theorem 8.2).
For osp(5|4) the arc diagram of + × ◦ ◦ × is given by

0 1 2 3 4 5

The arc diagrams of − ×2 ◦...◦︸︷︷︸
j times

× are the following:

0 1 2 3 4 5

The arc diagram of −×2 ×◦

0 1 2 3 4 5
The arc diagram of −×2 ◦ × ◦
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0 1 2 3 4 5

The arc diagram of −×2 ◦ ◦ ×◦

0 1 2 3 4 5

The arc diagram of −×2 ◦ ◦ ◦ × ◦

For osp(6|4) the arc diagram of > × ◦ ◦× is

0 1 2 3 4 5

and the arc diagram of × ◦ ◦× is

0 1 2 3 4

8.1.5. Description
The arc diagram Arc(f) is unique. For instance, for � = 0 the arc diagram Arc(f)

can be constructed as follows:
first we consider the diagram f ′ obtained from f by removing all but one symbol ×

from the zero position (f ′ = f if the zero position contains ◦ or ×);
for f ′ we construct the arc diagram in the usual way (we connect each symbol × with 

the next free empty symbol starting from the rightmost symbol × and going to the left);
if the zero in f is occupied by ×p with p > 1, we connect each of the remaining p − 1

symbol × with next two free positions starting from the lowest symbol × and going up.

8.1.6. Maximal arcs
Note that an arc arc(0; b) (resp., (0; b1, b2)) is maximal if and only if it is supported by 

the top symbol × in the zero position. Note that Arc(×pf) is obtained from Arc(×p+1f)
by “removal” of the maximal arc supported by the top symbol × in the zero position. 
Notice that for osp(2n + 1|2n), when we erase a symbol × from a signed diagram we 
either obtain a signed diagram with the same sign or an unsigned diagram if the resulting 
diagram does not have × in the zero position.
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Consider a diagram of the form f1×f2 where the symbol × occupies a position a > 0. 
This symbol × supports a maximal arc arc(a; b) if and only if Arc(f1 ◦ f2) is obtained 
from Arc(f1 × f2) by “removal” of the arc arc(a; 0), i.e.

Arc(f1 ◦ f2) = Arc(f1) ◦Arc(f2)

(if we remove an arc which is not maximal, the resulting diagram is not an arc diagram).
For instance, in Example 8.1.3, the maximal arcs are arc(11; 12) and arc(0; 4, 9).

8.2. Theorem. (i) The module L(ν) is a subquotient of DS1(L(λ)) if and only if 
Arc(howl(ν)) is obtained from Arc(howl(λ)) by removing a maximal arc and, in addition, 
in the osp(2m + 1|2n)-case, if ν has a sign, then the signs of λ and ν are equal.

(ii) Let e be the number of free positions in Arc(howl(λ)) which are to the left of the 
maximal arc.

For osp(2m + 1|2n) one has

[DS1(L(λ)) : L(ν)] =

⎧⎪⎨
⎪⎩

(1|0) if e = 0;
(2|0) if e is even and e �= 0;
(0|2) if e is odd.

(16)

The same formula holds for the case t = 2. For t = 0

[DS1(L(λ)) : L(ν)] =
{

(1|0) if e is even;
(0|1) if e is odd.

(17)

8.2.1. Examples
Take r = 1 and use the notations of Section 7.
For osp(5|4) we have

+ × ◦ ◦ ×
◦ ◦ ◦× = (1|0) + × ◦ ◦ ×

+× = (0|2)

and +×◦◦×
f ′ = 0 in other cases. The multiplicity is

−×2 ◦...◦︸︷︷︸
j times

×

−×2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for j < 3,
(1|0) for j = 3,
(2|0) if j > 3 is odd,
(0|2) if j > 3 is even.

For osp(4|4) we have

+ ◦ × ◦ × + ◦ × ◦ ×

+ ◦ × = − ◦ × = (0|1).
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For osp(6|4) we have

> × ◦ ◦×
> ◦ ◦ ◦× = (1|0) + × ◦ ◦ ×

+× = (0|2)

and +×◦◦×
f ′ = 0 in other cases.

8.3. Low rank cases

The proof will be a reduction to the cases osp(2 + t|2) for t = 0, 1, 2. For t = 0, 1
gx = 0, so gx-modules are supervector spaces. For t = 2 gx = C. For the principal block 
F>(g) DSx(F>(g)) is the category of finite-dimensional supervector spaces with trivial 
action of gx. The simple modules in the principal block are of the form L(λj), j ∈ Z for 
t = 0, and j ∈ N for t = 1, 2. For t = 0

DS1(L(λj)) ∼= Πj(C) ∀j ∈ Z

where λj := jε1 + |j|δ1 for j ∈ Z. For t = 1 we put λ0 := 0 and λj := jε1 + (j − 1)δ1 for 
j ≥ 1. For t = 2 we put λj := jε1 + jδ1 for j ≥ 0. Then one has the uniform rule [9]

DS1(L(λ0) = DS1(L(λ1)) ∼= C and

DS1(L(λj)) ∼= Πj−1(C)⊕2 for j ≥ 2.

8.4. Proof

Set f := howl(ν). Denote by u the coordinate of the rightmost symbol × in f .
If u > 0, then Arc(f) has a minimal arc arc(u; u + 1). If f

′

f �= 0, then, by 7.3, f ′ has 
a minimal arc arc(u; u + 1) and

f ′

f
= f

′

f
,

where f
′ (resp., f) are obtained from f ′ (resp., f) by “shrinking” the minimal arc 

arc(u; u + 1). Clearly, Arc(f) can be obtained from Arc(f ′) by deleting a maximal 
arc if and only if Arc(f) can be obtained from Arc(f ′) by deleting a maximal arc. Each 
maximal arc in Arc(f) corresponds to a maximal arc in Arc(f) and the number of free 
positions to the left of each maximal arc is the same. This reduces the statement to 
the case u = 0. Corollaries 7.5.3, 7.6.5 reduce the statement to the cases when f = ∅
or f =>. Since r = 1, the case f = ∅ correspond to osp(2|2), osp(3|2) and the case 
f => correspond to the case osp(4|2). For these cases the formula was checked in [9]
(see 8.3). �
We will use the following lemma.
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8.4.1. Lemma. Take τ as in 3.7.7. For r = 1 one has f
f ′ = τ(f)

τ(f ′) .

Proof. One has to check the following cases

f =
×p

> ◦f1 × f2 f ′ =
×p

> ◦f1 ◦ f2

f =
×p

> ×f1 × f2 f ′ =
×p

> ×f1 ◦ f2

f =
×p

> ×f1 f ′ =
×p

> ◦f1

f =
×p+1

> ◦f1 f ′ =
×p

> ◦f1

f =
×p+1

> ×f1 f ′ =
×p

> ×f1.

This can be easily done using the properties of maximal arcs discussed in 8.1.6. �
9. Semisimplicity of DSx(L)

Retain the notation of 3.7.8. Denote by F+(g) the Serre subcategory of F̃(g) generated 
by L ∈ Irr

(
F̃(g)

)
with dex(L) = 1. By Corollary 6.2.2, F+(g) is semisimple.

In Theorem 9.3 we will show that DSx(F+(g)) ⊂ F+(gx). As a result, DSx(L) is 
semisimple for each simple finite-dimensional module L.

9.1. Supercharacters

Recall that besides the usual character we have the supercharacter

schL(λ) = (−1)p(λ)π(chL(λ)),

where π : Z[Λm|n] → Z[Λm|n] is the linear involution given by

π(eμ) := (−1)p(μ)eμ.

The supercharacter ring of F in is the image of the map sch : F in → Z[h∗]; we denote 
this ring by J (g).

9.2. We will use the following lemma.
Lemma. Let M ∈ F in(g) and N ∈ F+(g) be such that schM = schN in the super-

character ring. If dimM ≤ dimN , then M ∼= N .

Proof. For each ν ∈ Λ(t)
m+�|n we set

(d0(ν)|d1(ν)) := [N : L(ν)], (d′0(ν)|d′1(ν)) := [M : L(ν)].
Since N ∈ F+(g) we have d0(ν)d1(ν) = 0.
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Since {schL(ν)| ν ∈ Λ(t)
m+�|n} are linearly independent, the equality schM = schN

implies

(d′0(ν)|d′1(ν)) = (d0(ν) + j(ν)|d1(ν) + j(ν)) for some j(ν) ∈ Z.

Combining d0(ν)d1(ν) = 0 with d′0(ν), d′1(ν) ≥ 0, we obtain j(ν) ≥ 0 for each ν. Using 
dimM ≤ dimN we get j(ν) = 0 for each ν, that is

∀ν [M : L(ν)] = [N : L(ν)]. (18)

Hence M ∈ F+(g). Since F+(g) is semisimple, M and N are completely reducible. Thus 
(18) gives M ∼= N . �

9.3. Theorem.

(i) For each x one has DSx

(
F+(g)

)
= F+(gx). In particular DSx(L(λ)) is semisimple 

for any x and any simple finite-dimensional module L.
(ii) For each simple finite-dimensional module L one has DSr+1(L) ∼= DS1(DSr(L)).

Proof. It is enough to consider the case x := xr.
For (i) we have to verify that for each L(λ) ∈ Irr(F+(g)), and Lgx

(ν) ∈ Irr
(
F(gx)

)
the graded multiplicity

(d0|d1) := [DSx(L(λ)) : Lgx
(ν)]

satisfies {
d1 = 0 if dex(ν) = 1,
d0 = 0 if dex(ν) = −1.

(19)

Recall that dex(λ) = dex(howl(λ)). Using Corollary 6.4.3 we reduce (i) to the case when 
λ, ν are core-free. In this case g = osp(2n + t|2n) = gn (for some n) and gx = gn−r.

We proceed by induction on r. Note that (ii) for r = 0 is tautological.
Consider the case r = 1 for t = 0, 1. For a core-free diagram f denote by ||f || the sum 

of the coordinates of the symbols × in f . One has dex(λ(f)) = (−1)||f ||, so (19) follows 
from Theorem 8.2. The case r = 1 for t = 2 follows from t = 1 and Lemma 8.4.1. This 
establishes (i) for r = 1.

Now fix any t and take r ≥ 2. By induction, DSr−1(L(λ)) ∈ F+(gn−r+1). Using (i) 
for r = 1 we get

N := DS1(DSr−1(L(λ)) ∈ F+(gx).

By [16], schN = sch DSr(L(λ)); by [8], Lem. 2.4.1, dim DSr(L(λ)) ≤ dimN . Us-

ing Lemma 9.2 we obtain N ∼= DSr(L(λ)) as required. �
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9.4. Corollary. Take τ : Λ(2)
m+1|n → Λ(1)

m|n as in 3.7.7. One has

[DSr(L(λ)) : L(gx(ν))] = [DSr(L(τ(λ))) : L(gx(τ(ν)))].

Proof. The case r = 1 was treated in Lemma 8.4.1. The general case follows from The-
orem 9.3 (ii). �

9.4.1. We say that a module M is pure if for any subquotient L of M , Π(L) is not 
a subquotient of M . Theorem 9.3 implies immediately the following assertion.

9.4.2. Corollary. DSx(L(λ)) is pure for any x and any λ.

9.4.3. Corollary. For irreducible L(λ)

DS1(L(λ)) ∼=
⊕
i

miΠniL(λi)

where the arc diagram of L(λi) is obtained by removing the i-th maximal arc and the 
associated × from the arc diagram of λ. The multiplicity mi is 1 or 2 according to the 
rules of Theorem 8.2 and ni = 1 mod 2 if and only if the parities of λ and λi differ.

Since DSr+1(L) ∼= DS1(DSr(L)) we can calculate any DSr+1(L) by repeated applica-
tion of DS1.

9.4.4. Remark
In the gl(m|n)-case DS(L(λ)) is even multiplicity free [14].

9.5. The OSp-case

Using Corollary 9.4.3 it is easy to describe the effect of DS1 on irreducible OSp(M |N)-
modules LOSp(λ), see below.

Let F̃ ′(M |N) denote the category of algebraic representations of OSp(M |N), then 
we have a commutative diagram

F̃ ′(M |N)

DS1

Res F̃(M |N)

DS1

F̃ ′(M − 2|N − 2) Res F̃(M − 2|N − 2).

Formula (16) holds for OSp(2m + 1|2n)-modules if the signs of LOSp(λ, ±) and 
LOSp(ν, ±) are equal; otherwise the multiplicity is zero.

Consider OSp(2m|2n)-case. Combining Remark 3.1.8 and Corollary 9.4.3 we conclude 

that DSx(L(λ)) has a structure of OSp(2m|2n)-module. Let us show that the multiplicity 
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dOSp(λ; ν) := [DS1(LOSp(λ)) : LOSp(ν)] is given by the formula (17) in the case λσ = λ, 
t = 0 and by the formula (16) otherwise.

Indeed, by Remark 3.1.8 we get

dOSp(λ; ν) = [DS1(LOSp(λ)) : L(ν)] =
{

[DS1(L(λ)) : L(ν)] if λσ = λ

2[DS1(L(λ)) : L(ν)] otherwise.

Thus dOSp(λ; ν) is given by the formula (17) (resp., (16)) for the case when λσ = λ and 
t = 0 (resp., t = 2). For the remaining case t = 0 and λσ �= λ we get

dOSp(λ; ν) =
{

(2|0) if e is even
(0|2) if e is odd,

(20)

where e as in Theorem 8.2. Notice that e �= 0, since the condition λσ �= λ implies that the 
zero position of the diagram of λ is empty. Hence dOSp(λ; ν) is given by the formula (16).

9.6. Question

For a simple module L in F̃(osp(2m|2n)), Theorem 9.3 implies that DSx(L) is an 
OSp(2m|2n)-module for any x. Is this still true for an arbitrary module in F̃(2m|2n)?

A related question can be asked about finite-dimensional modules over g =
D(2|1, a), F (4) (for these cases DSx(g) admits an involution σ and DSx(L) is σ-invariant 
for each simple module L in F̃(g), see [9]).

9.7. Superdimensions

Similarly to [14][19] in the gl(m|n)-case this allows us now to compute the superdimen-
sion of any irreducible L(λ). Let λ be maximal atypical and x of rank equal to the atypi-
cality. Then gx is either an orthogonal or symplectic Lie algebra or osp(1|2r) for some r. In 
each case the superdimension of an irreducible module is known. Since DS is a symmetric 
monoidal functor it preserves the superdimension. So sdim(L(λ)) = sdim(DS(L(λ))). 
So in order to compute sdim(L(λ)) it suffices to compute the multiplicity m(λ) of the 
isotypic representation DS(L(λ)) of gx, but this multiplicity is computed exactly by 
Theorem 8.2 since DSr(L(λ)) = DS1(. . . (DS1(L(λ)))). By [10, Corollary 7.29] the num-
ber m(λ) is also equal to the number of increasing paths in a certain graph from the 
Kostant weights to λ.

9.7.1. Example
Consider a core-free weight λ with the symbols × occupying adjacent positions with 
no × at the zero position. Then the arc diagram is completely nested:
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and in each step the maximal arc is removed. For t = 1, t = 2 the correspond-
ing irreducible summand occurs with multiplicity 2; for t = 0 the same happens 
with the corresponding OSp(2m|2m)-modules (see (20)). Since sdimLOsp(2m|2m)(λ) =
2 sdimLosp(2m|2n)(λ) we obtain

sdimLg(λ) =

⎧⎪⎨
⎪⎩

1 for g = gl(m|m)
2m−1 for g = osp(2m|2m)
2m for g = osp(2m + 1|2m), osp(2m + 2|2m).

9.7.2. Example
Consider a core-free weight λ with the symbols × which do not occupy adjacent 

positions and the zero position. In this case the arc diagram consists of m maximal 
separated arcs:

Using results of [14] for the gl-case we get

sdimLg(λ) =

⎧⎪⎨
⎪⎩

m! for g = gl(m|m)
2m−1m! for g = osp(2m|2m)
2mm! for g = osp(2m + 1|2m), osp(2m + 2|2m).

9.7.3. Example
For an osp(2m + 1|2n)-diagram with the empty zero position the multiplicity is 

2l|F |!/F ! for l = min(m|n) where F is the forest associated to the arc diagram of λ
(see [14]). For t = 0 the multiplicity m(λ) is given by a forest factorial exactly as for 
gl(n|n), but one has to take into account that in this case a removal of one arc may 
produce two arc diagrams, which differ by the sign.

Appendix A. Functors Res and Ind

Let g be a finite-dimensional Lie superalgebra, h ⊂ g be a subalgebra and h ∈ h be 
an element with the following properties:

(H1) h is the centralizer of h0 in g;
(H2) h0 acts diagonally on g;

(H3) all eigenvalues of adh are real and gadh = h.
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In this case we have a usual triangular decomposition

g = h⊕ (⊕α∈Δ(g)gα) where
Δ(g) ⊂ h∗0, Δ(g) = Δ+(g)

∐
Δ−(g)

gα := {g ∈ g| [h′, g] = α(h′)g for all h′ ∈ h0}
Δ+(g) := {α ∈ Δ(g)| α(h) > 0}, Δ−(g) := {α ∈ Δ(g)| α(h) < 0}.

We set n± := ⊕α∈Δ±gα, b := h ⊕ n+. We consider the partial order on h∗0 given by

λ > ν if ν − λ ∈ NΔ−.

A.1. We fix z ∈ h∗0 satisfying

α(z) ∈ R≥0 for all α ∈ Δ+ and α(z) ∈ R≤0 for all α ∈ Δ−, (21)

and introduce

t := gz, m :=
⊕

α∈Δ: α(z)>0

gα, p = gz + b = t � m.

The triples (p(z), h, h) and (t(z), h, h) satisfy (H1)–(H3) and

Δ+(p) = Δ+(g), Δ+(t) = {α ∈ Δ+(g)| α(z) = 0}
Δ−(p) = Δ−(t) = {α ∈ Δ−(g)| α(z) = 0}

A.2. Functors Resa and Ind

We denote by O the full category of finitely generated modules with a diagonal action 
of h0 and locally nilpotent action of n. It is easy to see that, up to a parity change, 
the simple h-modules are parametrized by λ ∈ h∗0; we denote by Cλ a simple h-module, 
where h0 acts by λ. We view C(λ) as a b-module with the zero action of n and set

M(λ) := Indg

b
C(λ);

this module has a unique simple quotients which we denote by L(λ). (The module M(λ)
is a Verma module if h∗1 = 0).

For each a ∈ C we define a functor Resa : O(g) → O(t) by

Resa(N) := {v ∈ N | zv = av} for N ∈ O(g).

We assume that
each module in O admits a unique maximal finite-dimensional quotient.
This holds, for example, if g0 is reductive, since in this case all modules in O have 

finite lengths.
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View V ∈ O(t) as a p-module with the trivial action of m and consider the induced 
g-module

Ind(V ) = U(g) ⊗U(p) V.

We denote by Ind(V ) the maximal finite-dimensional quotient of Ind(V ).
For a semisimple h0-module N we denote by Nν the weight space of the weight ν and 

by Ω(N) the set of weights of N .

A.3. Assumption

We fix a block B in the category O and set

P+(B)0 := {λ ∈ h∗0| dimL(λ) < ∞, L(λ) ∈ B or Π(L(λ)) ∈ B}.

We fix h′′ ⊂ h0 such that

z ∈ h′′, [h′′, t] = 0.

Assume that μ ∈ (h′′)∗ satisfies

∀λ, ν ∈ P+(B) λ ≥ ν, λ|h′′ = μ =⇒ ν|h′′ = μ. (22)

We set

A := {λ ∈ P+(B)| λ|h′′ = μ}.

By above, if λ ∈ A and ν ∈ P+(B) are such that λ ≥ ν, then ν ∈ A.
Let Fg(A) (resp., Ft(A)) be the Serre subcategory of O(g)) (resp., of O(t)) generated 

by the simple modules {L(λ), Π(L(λ))}λ∈A (resp., by {Lt(λ), Π(Lt(λ))}λ∈A).

A.4. Proposition. Set a := μ(z) and Res := Resa.
(i) For N ∈ Fg(A) one has Res(N) = Nm. For λ ∈ A one has Res(L(λ)) = Lt(λ).
(ii) The restrictions of Res and Ind give an equivalence of categories Fg(A) and 

Ft(A).

Proof. For each h-module M we denote by Spec(M) the set of z-eigenvalues. Recall that

Spec(m) ⊂ R>0, Spec(n−) ⊂ R≤0.

Identifying V with 1 ⊗ V ⊂ Ind(V ) we obtain

Res(Ind(V )) = V for V ∈ O(t). (23)
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Take N ∈ Fg(A). For λ ∈ A one has Spec(L(λ)) ⊂ (μ(z) − R≥0) =: U ; this gives 
Spec(N) ⊂ U and implies

Res(N) ⊂ Nm.

Set n′ := n ∩ t. Let v ∈ Nm be a non-zero vector of weight ν. The subspace U(n)v
contains a singular weight vector v′; let λ′ be the weight of v′. Since N ∈ Fg(A) we have 
λ′ ∈ A, that is λ′(z) = μ(z). Since mv = 0 we have U(n)v = U(n′)v, so v′ ∈ U(n′)v, that 
is ν(z) = λ′(z). Therefore v ∈ Res(N). Hence Res(N) = Nm.

Take λ ∈ A and denote by vλ a highest weight vector in L(λ). By above, for each non-
zero vector v the space U(n′)v contains vλ. Hence L(λ)m is simple, so L(λ)m = Lt(λ). 
This establishes (i).

Clearly, Res is exact. By (i), Res maps simple modules in Fg(A) to simple modules 
in Ft(A). Therefore the restriction of Res gives an exact functor

Res : Fg(A) → Ft(A).

Take a module V ∈ Ft(A). Note that for ν ∈ A the module IndLt(ν) lies in B; 
by (22) each simple finite-dimensional subquotient of IndLt(ν) is of the form L(ν′), 
where ν′ ∈ A. Since Ind is exact, each simple subquotient of Ind(V ) is L(ν′) or Π(L(ν′))
for some ν′ ∈ A, so Ind(V ) ∈ Fg(A). Moreover, using the exactness of Res and (23) we 
get

[Ind(V ) : L(ν)] = [V : Lt(ν)],

that is

[Ind(V ) : L(ν)] ≤ [V : Lt(ν)]. (24)

The module Ind(Lt(λ)) is a quotient of M(λ), so L(λ) is a quotient of Ind(Lt(λ)). 
Using (24) we get

Ind(Lt(λ)) = L(λ).

For each V ∈ Ft(A) and N ∈ Fg(A) we have

Homg(Ind(V ), N) = Homg(Ind(V ), N) = Homp(V,N) = Homt(V,Nm).

Using (i) we conclude that Ind : Ft(A) → Fg(A) is a left adjoint to Res : Fg(A) → Ft(A); 
by above, these functors map simple modules to simple modules and Res is exact.

Take any N ∈ Fg(A) and set V := Res(N). Let φ ∈ Homg(Ind(V ), N) be the preimage 
of the identity map

∼

V −→ Res(N).
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The image of φ is the submodule of N generated by Res(N); since Res is exact and 
Res(M) �= 0 for each M ∈ F(A), φ is surjective. Moreover, for each ν ∈ A one has

[N : L(ν)] = [V : Lt(ν)].

Combining with (24) we conclude that φ is bijective and for each ν ∈ A one has

[Ind(V ) : L(ν)] = [V : Ltν)]

which gives

[Res(Ind(V )) : Lt(ν)] = [V : Lt(ν)]. (25)

Take V ∈ Ft(A). Identifying V and 1 ⊗V ⊂ IndV we have V = Res(IndV ). Since Res is 
an exact functor on O this gives the natural surjective map V → Res(Ind(V )). By (25)
this map is bijective. Hence Res and Ind provide an equivalence of categories Fg(A) and 
Ft(A). �
A.5. Remark

Consider the case h = h0 and t = l × h′′. Set h′ := l ∩ h and

A′ := {λ|h′ | λ ∈ A}.

Since h = h′ ⊕ h′′ the map λ �→ λ|h′ gives a bijection between A and A′. Using Proposi-
tion A.4 we obtain the equivalence of the category Fg(A) and the Serre category Fl(A′)
which is generated by the simple l-modules {Ll(λ′), Π(Ll(λ′))}λ′∈A′ .

References

[1] J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra. IV: 
The general linear supergroup, J. Eur. Math. Soc. 14 (2012) 2.

[2] J. Comes, T. Heidersdorf, Thick ideals in Deligne’s category Rep(Oδ), J. Algebra 480 (2017).
[3] M. Duflo, V. Serganova, On associated variety for Lie superalgebras, arXiv :math /0507198 [math .

RT].
[4] M. Ehrig, C. Stroppel, On the category of finite-dimensional representations of OSP (r|2n), in: 

H. Krause, et al. (Eds.), Representation Theory – Current Trends and Perspectives, in: EMS Ser. 
Congr. Rep., 2017, pp. 109–170.

[5] M. Ehrig, C. Stroppel, On the category of finite-dimensional representations of OSP (r|2n), Part II, 
available at, http://www .math .uni -bonn .de /ag /stroppel /OSPII .pdf.

[6] M. Ehrig, C. Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe 
duality, Adv. Math. 331 (2018).

[7] I. Entova-Aizenbud, V. Serganova, Duflo-Serganova functor and superdimension formula for the 
periplectic Lie superalgebra, arXiv :1910 .02294, 2019, to appear in Algebra Number Theory.

[8] M. Gorelik, Depths and cores in the light of DS-functors, arXiv :2010 .05721, 2020.
[9] M. Gorelik, Bipartite extension graphs and the DS functor, arXiv :2010 .12817, 2020.

[10] M. Gorelik, T. Heidersdorf, Gruson-Serganova character formula and the Duflo-Serganova cohomol-

ogy functor, arXiv :2104 .12634, 2021.



M. Gorelik, Th. Heidersdorf / Advances in Mathematics 394 (2022) 108012 51
[11] C. Gruson, V. Serganova, Cohomology of generalized supergrassmanians and character formulae for 
basic classical Lie superalgebras, Proc. Lond. Math. Soc. (3) 101 (2010) 852–892.

[12] C. Gruson, V. Serganova, Bernstein-Gelfand-Gelfand reciprocity and indecomposable projective 
modules for classical algebraic supergroups, Mosc. Math. J. 13 (2) (2013) 281–313.

[13] T. Heidersdorf, On supergroups and their semisimplified representation categories, Algebr. Repre-
sent. Theory 22 (2019) 937–959.

[14] T. Heidersdorf, R. Weissauer, Cohomological tensor functors on representations of the general linear 
supergroup, Mem. Am. Math. Soc. 270 (2021) 1320, arXiv :1406 .0321.

[15] T. Heidersdorf, R. Weissauer, On classical tensor categories attached to the irreducible representa-
tions of the general linear supergroups GL(n|n), arXiv :1805 .00384, 2018.

[16] C. Hoyt, S. Reif, Grothendieck rings for Lie superalgebras and the Duflo-Serganova functor, Algebra 
Number Theory 12 (9) (2018) 2167–2184.

[17] V. Serganova, On a superdimension of an irreducible representation of a basic classical Lie super-
algebras, in: Supersymmetry in Mathematics and Physics, in: Lecture Notes in Math., vol. 2027, 
Springer, Heidelberg, 2011, pp. 253–273.

[18] V. Serganova, Finite dimensional representations of algebraic supergroups, in: Proceedings of the 
International Congress of Mathematicians ICM 2014, Seoul, Korea, August 13–21, 2014, vol. I: 
Plenary Lectures and Ceremonies, 2014.

[19] R. Weissauer, Model structures, categorical quotients and representations of super commutative 

Hopf algebras II, The case GL(m|n), arXiv :1010 .3217.


